when generating primitve Pythagorean triples and building sorted groups that contain a cathetus of specific length, I saw in one group an exceptionally high jump in the lengths of the second cathetus in that group:
while the observed usual growth factor is below 2, that factor is about 127 from the highlighted triple to the next one with common cathetus of length 1021020.
Questions:
- has this exceptional behavior been noticed before
- are there any upper bounds on the quotient of "adjacent" catheti-lenghts in the sorted groups with common cathetus-length
- will the jumps be observed eventually for every cathetus-length in the enumeration of all primitive Pythagorean triples
- do the triples for which these jumps are observed have special properties; in the example the difference between the common cathetus-length and the hypotenuse is $1$
$$\,$$
here is list of primitive Pythagorean triples where the the length of the maximal cathetus and of the hypotenuse differ by 1, grouped according to common cathetus length.
To be able to compare ratios within a group, only groups with 3 Pythogeran triples are listed:
[(60, 11, 61), (60, 91, 109), (60, 221, 229), (60, 899, 901)]
[(84, 13, 85), (84, 187, 205), (84, 437, 445), (84, 1763, 1765)]
[(180, 19, 181), (180, 299, 349), (180, 2021, 2029), (180, 8099, 8101)]
[(220, 21, 221), (220, 459, 509), (220, 3021, 3029), (220, 12099, 12101)]
[(264, 23, 265), (264, 1073, 1105), (264, 1927, 1945), (264, 17423, 17425)]
[(312, 25, 313), (312, 1505, 1537), (312, 2695, 2713), (312, 24335, 24337)]
[(364, 27, 365), (364, 627, 725), (364, 8277, 8285)]
[(420, 29, 421), (420, 341, 541), (420, 851, 949), (420, 1189, 1261), (420, 1739, 1789), (420, 4891, 4909), (420, 11021, 11029)]
[(480, 31, 481), (480, 2279, 2329), (480, 6391, 6409)]
[(612, 35, 613), (612, 1075, 1237), (612, 23405, 23413)]
[(760, 39, 761), (760, 5751, 5801), (760, 9009, 9041)]
[(840, 41, 841), (840, 559, 1009), (840, 1081, 1369), (840, 3551, 3649), (840, 7031, 7081), (840, 11009, 11041), (840, 19591, 19609)]
[(924, 43, 925), (924, 893, 1285), (924, 1643, 1885), (924, 4307, 4405), (924, 5893, 5965), (924, 23707, 23725)]
[(1740, 59, 1741), (1740, 3139, 3589), (1740, 7469, 7669), (1740, 20989, 21061)]
[(1860, 61, 1861), (1860, 3619, 4069), (1860, 8549, 8749), (1860, 23989, 24061)]
[(2244, 67, 2245), (2244, 2117, 3085), (2244, 4067, 4645), (2244, 10283, 10525)]
[(2380, 69, 2381), (2380, 4611, 5189), (2380, 7029, 7421), (2380, 14061, 14261)]
[(2520, 71, 2521), (2520, 1241, 2809), (2520, 3569, 4369), (2520, 19519, 19681)]
[(2964, 77, 2965), (2964, 2573, 3925), (2964, 5723, 6445), (2964, 12827, 13165)]
[(3120, 79, 3121), (3120, 3649, 4801), (3120, 10591, 11041), (3120, 14231, 14569)]
[(3444, 83, 3445), (3444, 6283, 7165), (3444, 14933, 15325)]
[(3612, 85, 3613), (3612, 6955, 7837), (3612, 16445, 16837)]
[(3960, 89, 3961), (3960, 1729, 4321), (3960, 9401, 10201)]
[(4140, 91, 4141), (4140, 7571, 8629), (4140, 12901, 13549)]
[(5100, 101, 5101), (5100, 4469, 6781), (5100, 9779, 11029), (5100, 22211, 22789)]
[(5304, 103, 5305), (5304, 3103, 6145), (5304, 24047, 24625)]
[(5940, 109, 5941), (5940, 11371, 12829), (5940, 17741, 18709)]
[(6160, 111, 6161), (6160, 4329, 7529), (6160, 6519, 8969)]
[(6384, 113, 6385), (6384, 17113, 18265), (6384, 22663, 23545)]
[(6612, 115, 6613), (6612, 6125, 9013), (6612, 12155, 13837)]
[(8580, 131, 8581), (8580, 3059, 9109), (8580, 10579, 13621), (8580, 15811, 17989), (8580, 19549, 21349)]
[(9660, 139, 9661), (9660, 8909, 13141), (9660, 11461, 14989), (9660, 17819, 20269)]
[(11100, 149, 11101), (11100, 9821, 14821), (11100, 21131, 23869)]
[(12012, 155, 12013), (12012, 3925, 12637), (12012, 18685, 22213), (12012, 22195, 25237)]
[(14280, 169, 14281), (14280, 6401, 15649), (14280, 10561, 17761), (14280, 16999, 22201)]
[(16380, 181, 16381), (16380, 8789, 18589), (16380, 11651, 20101), (16380, 12931, 20869)]
