Let $a,b \in \mathbb{R}$ and sequece $\{f(n)\}_{n=1}^{\infty}$ is given by homogeneous second order recursive relation
$$
f(n):=af(n-1)-b^2f(n-2), \:\:\: n>2
$$
with two arbitrary starting values $f(1), f(2)$.
In other words $\{f(n)\}_{n=1}^{\infty}$ is just general second order recursion and $b$ is squared because of homogenity of recursive relation.
Let sequence
$\{g(n)\}_{n=1}^{\infty}$ is given by
$$
g(n) :=
\begin{cases}
f(m)^2 & \text{if } n = 2m \\
f(m+1) f(m) & \text{if } n = 2m + 1 \\
\end{cases}.
$$
It is straightforward to verify that
$\{g(n)\}_{n=1}^{\infty}$
satisfy homogeneous fourth order recursive relation
$$
g(n)=ag(n-1)-ab^2g(n-3)+b^4g(n-4), \:\:\: n>4.
$$
To prove it one probably have to do two cases independently (or NOT and that is WHY I am basically asking this question):
$$
\underline{n=2m:}\\
$$
$$
g(2m)=ag(2m-1)-ab^2g(2m-3)+b^4g(2m-4)=af(m)f(m-1)-ab^2f(m-1)f(m-2)+b^4f(m-2)^2
$$
and
$$
f(m)^2=(af(m-1)-b^2f(m-2))^2=a^2f(m-1)^2-2ab^2f(m-1)f(m-2)+b^4f(m-2)^2,
$$
and
$$
g(2m)-f(m)^2=af(m-1)(f(m)-af(m-1)+b^2f(m-2))=a f(m-1) \cdot 0,
$$
thus $g(2m)=f(m)^2$.
$$
\underline{n=2m+1:}\\
$$
$$
g(2m+1)=ag(2m)-ab^2g(2m-2)+b^4g(2m-3)=af(m)^2-ab^2f(m-1)^2+b^4f(m-1)f(m-2)
$$
and
$$
f(m)f(m+1)=f(m)(af(m)-b^2f(m-1))=af(m)^2-b^2f(m)f(m-1),
$$
and
$$
g(2m+1)-f(m+1)f(m)= b^2 f(m-1)(f(m)-af(m-1)+b^2f(m-2))=b^2 f(m-1) \cdot 0,
$$
thus $g(2m+1)=f(m+1)f(m)$.
$\blacksquare$
I was able to go further: Let sequence
$\{h(n)\}_{n=1}^{\infty}$ is given by
$$
h(n) :=
\begin{cases}
f(m)^3 & \text{if } n = 3m \\
f(m+1)f(m)^2 & \text{if } n = 3m + 1 \\
f(m+1)^2 f(m)& \text{if } n = 3m + 2
\end{cases}.
$$
Then:
$$
h(n)=ah(n-1)-b^2h(n-2)+ab^2h(n-3)-a^2b^2h(n-4)+ab^4h(n-5)-b^6h(n-6)+ab^6h(n-7)-b^8h(n-8),\:\:\: n>8.
$$
I proved it dividing computations into three independent cases and expanding expressions
$$
f(m)^3, f(m+1)f(m)^2, f(m+1)^2 f(m)
$$
using binomial theorem for $k=3$ and recurrence for $\{f(n)\}_{n=1}^{\infty}$. In other words I did exactly the same like with $\{g(n)\}_{n=1}^{\infty}$. It worked but it was quite messy. However I think there might be quite nice generalization of these homogeneous recurrences. First of all properly define:
Let $n=km+r$, where $k \in \mathbb{N}$, $m \in \mathbb{N}_{0}$, $r \in \{0,1, \dots, k-1\}$.
Then:
$$
f_{k}(n):=f(m+1)^r f(m)^{k-r}.
$$
To clarify: $f_{1}(n)=f(n), f_{2}(n)=g(n),f_{3}(n)=h(n)$.
Call $f_{4}(n):=j(n)$. I conjectured (it is hard to explain how) that:
$$
j(n)=aj(n-1)-b^2j(n-2)+b^2(a^2-b^2)j(n-4)-ab^2(a^2-b^2)j(n-5)+b^4(a^2-b^2)j(n-6)-b^6(a^2-b^2)j(n-8)+ab^6(a^2-b^2)j(n-9)-b^8(a^2-b^2)j(n-10)+b^{12}j(n-12)-ab^{12}j(n-13)+b^{14}j(n-14),\:\:\: n>14
$$
I am unable to prove it and I have no idea about next recurrences.
What I am looking for is at least elegant proof of presented recurrences and general form of recurrence for any $f_{k}(n)$ (if it even exists).
I was inspired by following article https://www.sciencedirect.com/science/article/pii/S009630031000007X?via%3Dihub about $k$-Fibonacci numbers, but this is just information for reader how I come up with the original problem.
1 Answer
Let's use the characteristic function of the recurrence sequence. It is $\lambda^2-a\lambda+b^2=0$. Let's assume it has two distinct root $\lambda_1,\lambda_2$. This is without loss of generality, since the set $\{(a,b)\in\mathbb R^2:a^2-4b^2\ne 0\}$ is dense, and we are looking for some identity, which is just some polynomials in $a,b$ after expansion. Then $$ f(n)=x\lambda_1^n+y\lambda_2^n. $$
Let $\zeta_k=e^{2\pi i/k}$. Note the sequence $$ \chi_k(n):=\frac{1+\zeta_k^n+\zeta_k^{2n}+\dots+\zeta_k^{(k-1)n}}{k}=\begin{cases} 1& k|n\\ 0& \text{else} \end{cases}. $$ If $n=km+r$, then $m=(n-r)/k$, and $$ f_k(n)=f(m+1)^rf(m)^{k-r}=f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}. $$ We use $\chi_k(n)$ to put them together. For each $r=0,1,\dots,k-1$, $n=km+r\iff \chi_k(n-r)=1$, so $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r). $$ To avoid multi-valuedness of complex $k$-th root, we find a particular $k$-th root of $\lambda_1$ and $\lambda_2$, call them $\lambda_1^{1/k},\lambda_2^{1/k}$, and fix them throughout the rest of this proof. We denote $C$ to be the set of constants not related to $n$ but possibly related to $\lambda_1,\lambda_2, r,k$. Then $$ f\left(\frac{n+k-r}{k}\right),f\left(\frac{n-r}{k}\right)\in \lambda_1^{n/k}C+\lambda_2^{n/k}C. $$ $$ \chi_k(n-r)\in \zeta_k^{0n}C+\zeta_k^{1n}C+\zeta_k^{2n}C+\dots+\zeta_k^{(k-1)n}C. $$ These combined, we know $$ f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0\le j\le k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C. $$ Summing it up, we conclude that $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0\le j\le k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C. $$ It's a homogeneous polynomial in $\lambda_1^{n/k},\lambda_2^{n/k}$ of degree k. Let's consider the first term, i.e., the term with $(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0=\lambda_1^n$ in it. Clearly, all the summand in $$ f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}=\left(x\lambda_1^\frac{n+k-r}{k}+y\lambda_2^\frac{n+k-r}{k}\right)^r\left(x\lambda_1^\frac{n-r}{k}+y\lambda_2^\frac{n-r}{k}\right)^{k-r} $$ should take the $\lambda_1$ term.
So $$ [(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0]f_k(n)=\sum_{r=0}^{k-1}x^rx^{k-r}\chi_k(n-r)=x^k\sum_{r=0}^{k-1}\chi_k(n-r)=x^k. $$ This means, the coefficient of $(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0=\lambda_1^n$ does not contain anything in the form of $\zeta_k^{ln},l\ne 0$. Same arguments apply to the term $\lambda_2^n$.
We refine our result as $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0< j< k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C+\lambda_1^nC+\lambda_2^nC. $$ We read off the roots of the characteristic function of $f_k(n)$ from this, and its characteristic function should be $$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\prod_{0< j< k,0\le l\le k-1}(\lambda-\lambda_1^{j/k}\lambda_2^{(k-j)/k}\zeta_k^{l}). $$ We use the identity $$ \prod_{0\le l\le k-1}(A-B\zeta_k^{l})=A^k-B^k, $$ so $$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\prod_{0< j< k}(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}). $$
The following Mathematica code can calculate the coefficients of the recurrence relation of $f_k(n)$. For each given $k$, it calculate the characteristic function, and put the coefficients in descending order in $\lambda$ into a list. We can see the $k=2,3,4$ cases match with your results.
In[152]:= (*I denote the λ by l here*)
In[153]:=
polyF[k_] := -Product[(l^k - l1^j l2^(k - j)), {j, 1, k - 1}] (l -
l1) (l - l2)
In[154]:=
solve[k_] :=
Reverse@CoefficientList[
SymmetricReduction[polyF[k], {l1, l2}, {a, b^2}] // First, l];
In[155]:= solve[2]
Out[155]= {-1, a, 0, -a b^2, b^4}
In[156]:= solve[3]
Out[156]= {-1, a, -b^2, a b^2, -a^2 b^2, a b^4, -b^6, a b^6, -b^8}
In[157]:= solve[4]
Out[157]= {-1, a, -b^2, 0, a^2 b^2 - b^4, -a^3 b^2 + a b^4,
a^2 b^4 - b^6, 0, -a^2 b^6 + b^8,
a^3 b^6 - a b^8, -a^2 b^8 + b^10, 0, b^12, -a b^12, b^14}
In[158]:= solve[5]
Out[158]= {-1, a, -b^2, 0, 0, a^3 b^2 - 2 a b^4, -a^4 b^2 + 2 a^2 b^4,
a^3 b^4 - 2 a b^6, 0, 0, -a^4 b^6 + 3 a^2 b^8 - 2 b^10,
a^5 b^6 - 3 a^3 b^8 + 2 a b^10, -a^4 b^8 + 3 a^2 b^10 - 2 b^12, 0, 0,
a^3 b^12 - 2 a b^14, -a^4 b^12 + 2 a^2 b^14,
a^3 b^14 - 2 a b^16, 0, 0, -b^20, a b^20, -b^22}
In[159]:= solve[6]
Out[159]= {-1, a, -b^2, 0, 0, 0,
a^4 b^2 - 3 a^2 b^4 + b^6, -a^5 b^2 + 3 a^3 b^4 - a b^6,
a^4 b^4 - 3 a^2 b^6 + b^8, 0, 0, 0, -a^6 b^6 + 5 a^4 b^8 -
7 a^2 b^10 + 2 b^12,
a^7 b^6 - 5 a^5 b^8 + 7 a^3 b^10 - 2 a b^12, -a^6 b^8 + 5 a^4 b^10 -
7 a^2 b^12 + 2 b^14, 0, 0, 0,
a^6 b^12 - 5 a^4 b^14 + 7 a^2 b^16 - 2 b^18, -a^7 b^12 +
5 a^5 b^14 - 7 a^3 b^16 + 2 a b^18,
a^6 b^14 - 5 a^4 b^16 + 7 a^2 b^18 - 2 b^20, 0, 0, 0, -a^4 b^20 +
3 a^2 b^22 - b^24,
a^5 b^20 - 3 a^3 b^22 + a b^24, -a^4 b^22 + 3 a^2 b^24 -
b^26, 0, 0, 0, b^30, -a b^30, b^32}
In[160]:= solve[7]
Out[160]= {-1, a, -b^2, 0, 0, 0, 0,
a^5 b^2 - 4 a^3 b^4 + 3 a b^6, -a^6 b^2 + 4 a^4 b^4 - 3 a^2 b^6,
a^5 b^4 - 4 a^3 b^6 + 3 a b^8, 0, 0, 0, 0, -a^8 b^6 + 7 a^6 b^8 -
16 a^4 b^10 + 13 a^2 b^12 - 3 b^14,
a^9 b^6 - 7 a^7 b^8 + 16 a^5 b^10 - 13 a^3 b^12 +
3 a b^14, -a^8 b^8 + 7 a^6 b^10 - 16 a^4 b^12 + 13 a^2 b^14 -
3 b^16, 0, 0, 0, 0,
a^9 b^12 - 8 a^7 b^14 + 22 a^5 b^16 - 23 a^3 b^18 +
6 a b^20, -a^10 b^12 + 8 a^8 b^14 - 22 a^6 b^16 + 23 a^4 b^18 -
6 a^2 b^20,
a^9 b^14 - 8 a^7 b^16 + 22 a^5 b^18 - 23 a^3 b^20 +
6 a b^22, 0, 0, 0, 0, -a^8 b^20 + 7 a^6 b^22 - 16 a^4 b^24 +
13 a^2 b^26 - 3 b^28,
a^9 b^20 - 7 a^7 b^22 + 16 a^5 b^24 - 13 a^3 b^26 +
3 a b^28, -a^8 b^22 + 7 a^6 b^24 - 16 a^4 b^26 + 13 a^2 b^28 -
3 b^30, 0, 0, 0, 0,
a^5 b^30 - 4 a^3 b^32 + 3 a b^34, -a^6 b^30 + 4 a^4 b^32 -
3 a^2 b^34, a^5 b^32 - 4 a^3 b^34 + 3 a b^36, 0, 0, 0, 0, -b^42,
a b^42, -b^44}
In[161]:= solve[8]
Out[161]= {-1, a, -b^2, 0, 0, 0, 0, 0,
a^6 b^2 - 5 a^4 b^4 + 6 a^2 b^6 - b^8, -a^7 b^2 + 5 a^5 b^4 -
6 a^3 b^6 + a b^8,
a^6 b^4 - 5 a^4 b^6 + 6 a^2 b^8 - b^10, 0, 0, 0, 0, 0, -a^10 b^6 +
9 a^8 b^8 - 29 a^6 b^10 + 40 a^4 b^12 - 22 a^2 b^14 + 3 b^16,
a^11 b^6 - 9 a^9 b^8 + 29 a^7 b^10 - 40 a^5 b^12 + 22 a^3 b^14 -
3 a b^16, -a^10 b^8 + 9 a^8 b^10 - 29 a^6 b^12 + 40 a^4 b^14 -
22 a^2 b^16 + 3 b^18, 0, 0, 0, 0, 0,
a^12 b^12 - 11 a^10 b^14 + 46 a^8 b^16 - 90 a^6 b^18 + 81 a^4 b^20 -
28 a^2 b^22 + 3 b^24, -a^13 b^12 + 11 a^11 b^14 - 46 a^9 b^16 +
90 a^7 b^18 - 81 a^5 b^20 + 28 a^3 b^22 - 3 a b^24,
a^12 b^14 - 11 a^10 b^16 + 46 a^8 b^18 - 90 a^6 b^20 + 81 a^4 b^22 -
28 a^2 b^24 + 3 b^26, 0, 0, 0, 0, 0, -a^12 b^20 + 11 a^10 b^22 -
46 a^8 b^24 + 90 a^6 b^26 - 81 a^4 b^28 + 28 a^2 b^30 - 3 b^32,
a^13 b^20 - 11 a^11 b^22 + 46 a^9 b^24 - 90 a^7 b^26 + 81 a^5 b^28 -
28 a^3 b^30 + 3 a b^32, -a^12 b^22 + 11 a^10 b^24 - 46 a^8 b^26 +
90 a^6 b^28 - 81 a^4 b^30 + 28 a^2 b^32 - 3 b^34, 0, 0, 0, 0, 0,
a^10 b^30 - 9 a^8 b^32 + 29 a^6 b^34 - 40 a^4 b^36 + 22 a^2 b^38 -
3 b^40, -a^11 b^30 + 9 a^9 b^32 - 29 a^7 b^34 + 40 a^5 b^36 -
22 a^3 b^38 + 3 a b^40,
a^10 b^32 - 9 a^8 b^34 + 29 a^6 b^36 - 40 a^4 b^38 + 22 a^2 b^40 -
3 b^42, 0, 0, 0, 0, 0, -a^6 b^42 + 5 a^4 b^44 - 6 a^2 b^46 + b^48,
a^7 b^42 - 5 a^5 b^44 + 6 a^3 b^46 - a b^48, -a^6 b^44 +
5 a^4 b^46 - 6 a^2 b^48 + b^50, 0, 0, 0, 0, 0, b^56, -a b^56, b^58}
One may ask whether it is the recurrence relation of the smallest order. Clearly it is not necessarily the case. When one of $x,y,\lambda_1,\lambda_2$ is zero, the expression $f(n)=x\lambda_1^n+y\lambda_2^n$ is degenerate, and we can find a smaller recurrence relation. There can also be some cases where the relation we obtained above is not minimal, even if $x,y,\lambda_1,\lambda_2$ are nonzero. For example, when $k=4,a=4,b=1$, that is $\lambda_{1,2}=2\pm \sqrt 3$, the minimal characteristic function of $f_4(n)$ is actually $F_4(\lambda)/(\lambda+1)$. (I found this example by examining the coefficients of $\lambda_1^{sn/k}\lambda_2^{(k-s)n/k}\zeta_k^{tn}$ in the expression of $f_k(n)$, and try to find values of $\lambda_{1,2}$ to make some of them zero.)
Here is the code where I did the calculation and verification. We took $\lambda_{1,2}=2\pm \sqrt 3$, and work with the $$ F_4(\lambda)/(\lambda+1)=-\lambda ^{13}+5 \lambda ^{12}-6 \lambda ^{11}+6 \lambda ^{10}+9 \lambda ^9-69 \lambda ^8+84 \lambda ^7-84 \lambda ^6+69 \lambda ^5-9 \lambda ^4-6 \lambda ^3+6 \lambda ^2-5 \lambda +1. $$
In[91]:= (*u1=l1^(1/k), u1n=u1^n, same for u2 and u2n*)
k=4;
z:=Exp[2 Pi I/k];
getCoeff[s_,t_]:=Module[{fk},
fk=Sum[(x u1n u1^(k-r)+y u2n u2^(k-r))^r (x u1n u1^-r+y u2n u2^-r)^(k-r) Sum[(z^-r zn)^j,{j,0,k-1}]
,{r,0,k-1}];
Coefficient[Coefficient[fk,u1n^s u2n^(k-s)],zn,t]//Factor
]
In[94]:= Table[getCoeff[s,t],{s,0,k-1},{t,0,k-1}]//MatrixForm
Out[94]//MatrixForm= (4 y^4 0 0 0
((u1+u2)^2 (u1^2+u2^2)^2 x y^3)/(u1^3 u2^3) -((I (u1-u2)^2 (u1-I u2)^2 (u1+u2)^2 x y^3)/(u1^3 u2^3)) -(((u1-u2)^2 (u1^2+u2^2)^2 x y^3)/(u1^3 u2^3)) (I (u1-u2)^2 (u1+I u2)^2 (u1+u2)^2 x y^3)/(u1^3 u2^3)
((u1^2+u2^2)^2 (u1^4+4 u1^2 u2^2+u2^4) x^2 y^2)/(u1^4 u2^4) -(((u1-u2)^2 (u1+u2)^2 (u1^2+u2^2)^2 x^2 y^2)/(u1^4 u2^4)) ((u1-u2)^2 (u1+u2)^2 (u1^4-4 u1^2 u2^2+u2^4) x^2 y^2)/(u1^4 u2^4) -(((u1-u2)^2 (u1+u2)^2 (u1^2+u2^2)^2 x^2 y^2)/(u1^4 u2^4))
((u1+u2)^2 (u1^2+u2^2)^2 x^3 y)/(u1^3 u2^3) (I (u1-u2)^2 (u1+I u2)^2 (u1+u2)^2 x^3 y)/(u1^3 u2^3) -(((u1-u2)^2 (u1^2+u2^2)^2 x^3 y)/(u1^3 u2^3)) -((I (u1-u2)^2 (u1-I u2)^2 (u1+u2)^2 x^3 y)/(u1^3 u2^3))
)
In[95]:= polyF[k_]:=-Product[(l^k-l1^j l2^(k-j)),{j,1,k-1}] (l-l1) (l-l2);
reducedF=First@SymmetricReduction[polyF[k],{l1,l2},{4,1}]/(1+l)//Cancel;
reducedF/.l->\[Lambda]
list=CoefficientList[reducedF,l]
Out[97]= 1-5 \[Lambda]+6 \[Lambda]^2-6 \[Lambda]^3-9 \[Lambda]^4+69 \[Lambda]^5-84 \[Lambda]^6+84 \[Lambda]^7-69 \[Lambda]^8+9 \[Lambda]^9+6 \[Lambda]^10-6 \[Lambda]^11+5 \[Lambda]^12-\[Lambda]^13
Out[98]= {1,-5,6,-6,-9,69,-84,84,-69,9,6,-6,5,-1}
In[99]:= f[n_]:=x (2+Sqrt[3])^n+y (2-Sqrt[3])^n;
f[k_,n_]:=Module[{m,r},r=Mod[n,k];
m=(n-r)/k;
f[m+1]^r f[m]^(k-r)];
Do[Print[Sum[f[k,p+q] list[[p]],{p,Length[list]}]//Expand],{q,1,20}];
(* and the results are all zero*)
It's still interesting, though, to consider whether our recurrence sequence is minimal, when $x,y,a,b$ are considered algebraically independent indeterminates, i.e., the most general case.
It's also possible to give a closed form expression of $F_k(\lambda)$. We first work on the product $$ \prod_{0< j< k}(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}). $$ We use the q-binomial coefficients and the Cauchy binomial theorem $$ \prod_{p=0}^{n-1}\left(1+q^p t\right)=\sum_{p=0}^n q^{p(p-1) / 2}\binom{n}{p}_q t^p, $$ and \begin{align*} \prod_{0< j< k}\left(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}\right)&=\lambda^{k(k-1)}\prod_{j=1}^{k-1}\left(1-\left(\frac{\lambda_1}{\lambda_2}\right)^j\left(\frac{\lambda_2}{\lambda}\right)^k\right)\\ &=\lambda^{k(k-1)}\sum_{p=0}^{k-1}\left(\frac{\lambda_1}{\lambda_2}\right)^{p(p-1)/2}\binom{k-1}{p}_{\lambda_1/\lambda_2}\left(-\frac{\lambda_1\lambda_2^{k-1}}{\lambda^k}\right)^p. \end{align*} where we take $n=k-1,t=-\frac{\lambda_1\lambda_2^{k-1}}{\lambda_k},q=\lambda_1/\lambda_2$.
So the conclusion is
$$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\lambda^{k(k-1)}\sum_{p=0}^{k-1}\left(\frac{\lambda_1}{\lambda_2}\right)^{p(p-1)/2}\binom{k-1}{p}_{\lambda_1/\lambda_2}\left(-\frac{\lambda_1\lambda_2^{k-1}}{\lambda^k}\right)^p. $$
Again, we verify this is correct using Mathematica for small $k$.
In[227]:=
verify[k_] :=
Product[(l^k - l1^j l2^(k - j)), {j, 1, k - 1}] -
l^((k - 1) k) Sum[(l1/l2)^(p (p - 1)/2) QBinomial[k - 1, p,
l1/l2] (-l1 l2^(k - 1)/l^k)^p, {p, 0, k - 1}] //
FunctionExpand // Expand;
In[233]:= verify[2]
Out[233]= 0
In[228]:= verify[3]
Out[228]= 0
In[230]:= verify[4]
Out[230]= 0
In[231]:= verify[5]
Out[231]= 0
In[232]:= verify[6]
Out[232]= 0
```
-
1$\begingroup$ Great job! Order of recurrence for $f_k(n)$ seems to be $n^2+n+2$. $\endgroup$Oliver Bukovianský– Oliver Bukovianský2025-08-10 09:29:02 +00:00Commented Aug 10 at 9:29
-
1$\begingroup$ Yes, to be precise, it's $k^2-k+2$. $\endgroup$Bowen Chen– Bowen Chen2025-08-10 13:41:32 +00:00Commented Aug 10 at 13:41
-
$\begingroup$ Can someone please clarify the derivation of expression under the sentence "These combined, we know"? I am currently working on generalization for zero discriminant $a^2-4b^2$ and it might be helpful. $\endgroup$Oliver Bukovianský– Oliver Bukovianský2025-08-11 22:25:49 +00:00Commented Aug 11 at 22:25
-
$\begingroup$ I am expanding the expression $f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)$ and tracking the terms containing $n$. In order to expand them, you just need to use binomial theorem and polynomial multiplication. $\endgroup$Bowen Chen– Bowen Chen2025-08-12 16:25:50 +00:00Commented Aug 12 at 16:25
-
1$\begingroup$ yes, you are right, There is binomial coefficients in $C$. And when you are dealing with $\lambda_1=\lambda_2$ case, please be careful it has different expression. It should be $f(n)=x\lambda_1^n+yn\lambda_1^n$. $\endgroup$Bowen Chen– Bowen Chen2025-08-14 16:09:20 +00:00Commented Aug 14 at 16:09