2
$\begingroup$

Let $a,b \in \mathbb{R}$ and sequece $\{f(n)\}_{n=1}^{\infty}$ is given by homogeneous second order recursive relation $$ f(n):=af(n-1)-b^2f(n-2), \:\:\: n>2 $$ with two arbitrary starting values $f(1), f(2)$.
In other words $\{f(n)\}_{n=1}^{\infty}$ is just general second order recursion and $b$ is squared because of homogenity of recursive relation.
Let sequence $\{g(n)\}_{n=1}^{\infty}$ is given by $$ g(n) := \begin{cases} f(m)^2 & \text{if } n = 2m \\ f(m+1) f(m) & \text{if } n = 2m + 1 \\ \end{cases}. $$ It is straightforward to verify that $\{g(n)\}_{n=1}^{\infty}$ satisfy homogeneous fourth order recursive relation $$ g(n)=ag(n-1)-ab^2g(n-3)+b^4g(n-4), \:\:\: n>4. $$ To prove it one probably have to do two cases independently (or NOT and that is WHY I am basically asking this question): $$ \underline{n=2m:}\\ $$ $$ g(2m)=ag(2m-1)-ab^2g(2m-3)+b^4g(2m-4)=af(m)f(m-1)-ab^2f(m-1)f(m-2)+b^4f(m-2)^2 $$ and $$ f(m)^2=(af(m-1)-b^2f(m-2))^2=a^2f(m-1)^2-2ab^2f(m-1)f(m-2)+b^4f(m-2)^2, $$ and $$ g(2m)-f(m)^2=af(m-1)(f(m)-af(m-1)+b^2f(m-2))=a f(m-1) \cdot 0, $$ thus $g(2m)=f(m)^2$. $$ \underline{n=2m+1:}\\ $$ $$ g(2m+1)=ag(2m)-ab^2g(2m-2)+b^4g(2m-3)=af(m)^2-ab^2f(m-1)^2+b^4f(m-1)f(m-2) $$ and $$ f(m)f(m+1)=f(m)(af(m)-b^2f(m-1))=af(m)^2-b^2f(m)f(m-1), $$ and $$ g(2m+1)-f(m+1)f(m)= b^2 f(m-1)(f(m)-af(m-1)+b^2f(m-2))=b^2 f(m-1) \cdot 0, $$ thus $g(2m+1)=f(m+1)f(m)$. $\blacksquare$
I was able to go further: Let sequence $\{h(n)\}_{n=1}^{\infty}$ is given by $$ h(n) := \begin{cases} f(m)^3 & \text{if } n = 3m \\ f(m+1)f(m)^2 & \text{if } n = 3m + 1 \\ f(m+1)^2 f(m)& \text{if } n = 3m + 2 \end{cases}. $$ Then: $$ h(n)=ah(n-1)-b^2h(n-2)+ab^2h(n-3)-a^2b^2h(n-4)+ab^4h(n-5)-b^6h(n-6)+ab^6h(n-7)-b^8h(n-8),\:\:\: n>8. $$ I proved it dividing computations into three independent cases and expanding expressions $$ f(m)^3, f(m+1)f(m)^2, f(m+1)^2 f(m) $$ using binomial theorem for $k=3$ and recurrence for $\{f(n)\}_{n=1}^{\infty}$. In other words I did exactly the same like with $\{g(n)\}_{n=1}^{\infty}$. It worked but it was quite messy. However I think there might be quite nice generalization of these homogeneous recurrences. First of all properly define:
Let $n=km+r$, where $k \in \mathbb{N}$, $m \in \mathbb{N}_{0}$, $r \in \{0,1, \dots, k-1\}$. Then: $$ f_{k}(n):=f(m+1)^r f(m)^{k-r}. $$ To clarify: $f_{1}(n)=f(n), f_{2}(n)=g(n),f_{3}(n)=h(n)$.
Call $f_{4}(n):=j(n)$. I conjectured (it is hard to explain how) that: $$ j(n)=aj(n-1)-b^2j(n-2)+b^2(a^2-b^2)j(n-4)-ab^2(a^2-b^2)j(n-5)+b^4(a^2-b^2)j(n-6)-b^6(a^2-b^2)j(n-8)+ab^6(a^2-b^2)j(n-9)-b^8(a^2-b^2)j(n-10)+b^{12}j(n-12)-ab^{12}j(n-13)+b^{14}j(n-14),\:\:\: n>14 $$ I am unable to prove it and I have no idea about next recurrences.
What I am looking for is at least elegant proof of presented recurrences and general form of recurrence for any $f_{k}(n)$ (if it even exists).
I was inspired by following article https://www.sciencedirect.com/science/article/pii/S009630031000007X?via%3Dihub about $k$-Fibonacci numbers, but this is just information for reader how I come up with the original problem.

$\endgroup$

1 Answer 1

3
+100
$\begingroup$

Let's use the characteristic function of the recurrence sequence. It is $\lambda^2-a\lambda+b^2=0$. Let's assume it has two distinct root $\lambda_1,\lambda_2$. This is without loss of generality, since the set $\{(a,b)\in\mathbb R^2:a^2-4b^2\ne 0\}$ is dense, and we are looking for some identity, which is just some polynomials in $a,b$ after expansion. Then $$ f(n)=x\lambda_1^n+y\lambda_2^n. $$

Let $\zeta_k=e^{2\pi i/k}$. Note the sequence $$ \chi_k(n):=\frac{1+\zeta_k^n+\zeta_k^{2n}+\dots+\zeta_k^{(k-1)n}}{k}=\begin{cases} 1& k|n\\ 0& \text{else} \end{cases}. $$ If $n=km+r$, then $m=(n-r)/k$, and $$ f_k(n)=f(m+1)^rf(m)^{k-r}=f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}. $$ We use $\chi_k(n)$ to put them together. For each $r=0,1,\dots,k-1$, $n=km+r\iff \chi_k(n-r)=1$, so $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r). $$ To avoid multi-valuedness of complex $k$-th root, we find a particular $k$-th root of $\lambda_1$ and $\lambda_2$, call them $\lambda_1^{1/k},\lambda_2^{1/k}$, and fix them throughout the rest of this proof. We denote $C$ to be the set of constants not related to $n$ but possibly related to $\lambda_1,\lambda_2, r,k$. Then $$ f\left(\frac{n+k-r}{k}\right),f\left(\frac{n-r}{k}\right)\in \lambda_1^{n/k}C+\lambda_2^{n/k}C. $$ $$ \chi_k(n-r)\in \zeta_k^{0n}C+\zeta_k^{1n}C+\zeta_k^{2n}C+\dots+\zeta_k^{(k-1)n}C. $$ These combined, we know $$ f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0\le j\le k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C. $$ Summing it up, we conclude that $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0\le j\le k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C. $$ It's a homogeneous polynomial in $\lambda_1^{n/k},\lambda_2^{n/k}$ of degree k. Let's consider the first term, i.e., the term with $(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0=\lambda_1^n$ in it. Clearly, all the summand in $$ f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}=\left(x\lambda_1^\frac{n+k-r}{k}+y\lambda_2^\frac{n+k-r}{k}\right)^r\left(x\lambda_1^\frac{n-r}{k}+y\lambda_2^\frac{n-r}{k}\right)^{k-r} $$ should take the $\lambda_1$ term.

So $$ [(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0]f_k(n)=\sum_{r=0}^{k-1}x^rx^{k-r}\chi_k(n-r)=x^k\sum_{r=0}^{k-1}\chi_k(n-r)=x^k. $$ This means, the coefficient of $(\lambda_1^{n/k})^k(\lambda_0^{n/k})^0=\lambda_1^n$ does not contain anything in the form of $\zeta_k^{ln},l\ne 0$. Same arguments apply to the term $\lambda_2^n$.

We refine our result as $$ f_k(n)=\sum_{r=0}^{k-1}f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)\in \sum_{0< j< k,0\le l\le k-1} \lambda_1^{jn/k}\lambda_2^{(k-j)n/k}\zeta_k^{ln}C+\lambda_1^nC+\lambda_2^nC. $$ We read off the roots of the characteristic function of $f_k(n)$ from this, and its characteristic function should be $$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\prod_{0< j< k,0\le l\le k-1}(\lambda-\lambda_1^{j/k}\lambda_2^{(k-j)/k}\zeta_k^{l}). $$ We use the identity $$ \prod_{0\le l\le k-1}(A-B\zeta_k^{l})=A^k-B^k, $$ so $$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\prod_{0< j< k}(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}). $$

The following Mathematica code can calculate the coefficients of the recurrence relation of $f_k(n)$. For each given $k$, it calculate the characteristic function, and put the coefficients in descending order in $\lambda$ into a list. We can see the $k=2,3,4$ cases match with your results.

In[152]:= (*I denote the λ by l here*)

In[153]:= 
polyF[k_] := -Product[(l^k - l1^j l2^(k - j)), {j, 1, k - 1}] (l - 
    l1) (l - l2)

In[154]:= 
solve[k_] := 
  Reverse@CoefficientList[
    SymmetricReduction[polyF[k], {l1, l2}, {a, b^2}] // First, l];

In[155]:= solve[2]

Out[155]= {-1, a, 0, -a b^2, b^4}

In[156]:= solve[3]

Out[156]= {-1, a, -b^2, a b^2, -a^2 b^2, a b^4, -b^6, a b^6, -b^8}

In[157]:= solve[4]

Out[157]= {-1, a, -b^2, 0, a^2 b^2 - b^4, -a^3 b^2 + a b^4, 
 a^2 b^4 - b^6, 0, -a^2 b^6 + b^8, 
 a^3 b^6 - a b^8, -a^2 b^8 + b^10, 0, b^12, -a b^12, b^14}

In[158]:= solve[5]

Out[158]= {-1, a, -b^2, 0, 0, a^3 b^2 - 2 a b^4, -a^4 b^2 + 2 a^2 b^4,
  a^3 b^4 - 2 a b^6, 0, 0, -a^4 b^6 + 3 a^2 b^8 - 2 b^10, 
 a^5 b^6 - 3 a^3 b^8 + 2 a b^10, -a^4 b^8 + 3 a^2 b^10 - 2 b^12, 0, 0,
  a^3 b^12 - 2 a b^14, -a^4 b^12 + 2 a^2 b^14, 
 a^3 b^14 - 2 a b^16, 0, 0, -b^20, a b^20, -b^22}

In[159]:= solve[6]

Out[159]= {-1, a, -b^2, 0, 0, 0, 
 a^4 b^2 - 3 a^2 b^4 + b^6, -a^5 b^2 + 3 a^3 b^4 - a b^6, 
 a^4 b^4 - 3 a^2 b^6 + b^8, 0, 0, 0, -a^6 b^6 + 5 a^4 b^8 - 
  7 a^2 b^10 + 2 b^12, 
 a^7 b^6 - 5 a^5 b^8 + 7 a^3 b^10 - 2 a b^12, -a^6 b^8 + 5 a^4 b^10 - 
  7 a^2 b^12 + 2 b^14, 0, 0, 0, 
 a^6 b^12 - 5 a^4 b^14 + 7 a^2 b^16 - 2 b^18, -a^7 b^12 + 
  5 a^5 b^14 - 7 a^3 b^16 + 2 a b^18, 
 a^6 b^14 - 5 a^4 b^16 + 7 a^2 b^18 - 2 b^20, 0, 0, 0, -a^4 b^20 + 
  3 a^2 b^22 - b^24, 
 a^5 b^20 - 3 a^3 b^22 + a b^24, -a^4 b^22 + 3 a^2 b^24 - 
  b^26, 0, 0, 0, b^30, -a b^30, b^32}

In[160]:= solve[7]

Out[160]= {-1, a, -b^2, 0, 0, 0, 0, 
 a^5 b^2 - 4 a^3 b^4 + 3 a b^6, -a^6 b^2 + 4 a^4 b^4 - 3 a^2 b^6, 
 a^5 b^4 - 4 a^3 b^6 + 3 a b^8, 0, 0, 0, 0, -a^8 b^6 + 7 a^6 b^8 - 
  16 a^4 b^10 + 13 a^2 b^12 - 3 b^14, 
 a^9 b^6 - 7 a^7 b^8 + 16 a^5 b^10 - 13 a^3 b^12 + 
  3 a b^14, -a^8 b^8 + 7 a^6 b^10 - 16 a^4 b^12 + 13 a^2 b^14 - 
  3 b^16, 0, 0, 0, 0, 
 a^9 b^12 - 8 a^7 b^14 + 22 a^5 b^16 - 23 a^3 b^18 + 
  6 a b^20, -a^10 b^12 + 8 a^8 b^14 - 22 a^6 b^16 + 23 a^4 b^18 - 
  6 a^2 b^20, 
 a^9 b^14 - 8 a^7 b^16 + 22 a^5 b^18 - 23 a^3 b^20 + 
  6 a b^22, 0, 0, 0, 0, -a^8 b^20 + 7 a^6 b^22 - 16 a^4 b^24 + 
  13 a^2 b^26 - 3 b^28, 
 a^9 b^20 - 7 a^7 b^22 + 16 a^5 b^24 - 13 a^3 b^26 + 
  3 a b^28, -a^8 b^22 + 7 a^6 b^24 - 16 a^4 b^26 + 13 a^2 b^28 - 
  3 b^30, 0, 0, 0, 0, 
 a^5 b^30 - 4 a^3 b^32 + 3 a b^34, -a^6 b^30 + 4 a^4 b^32 - 
  3 a^2 b^34, a^5 b^32 - 4 a^3 b^34 + 3 a b^36, 0, 0, 0, 0, -b^42, 
 a b^42, -b^44}

In[161]:= solve[8]

Out[161]= {-1, a, -b^2, 0, 0, 0, 0, 0, 
 a^6 b^2 - 5 a^4 b^4 + 6 a^2 b^6 - b^8, -a^7 b^2 + 5 a^5 b^4 - 
  6 a^3 b^6 + a b^8, 
 a^6 b^4 - 5 a^4 b^6 + 6 a^2 b^8 - b^10, 0, 0, 0, 0, 0, -a^10 b^6 + 
  9 a^8 b^8 - 29 a^6 b^10 + 40 a^4 b^12 - 22 a^2 b^14 + 3 b^16, 
 a^11 b^6 - 9 a^9 b^8 + 29 a^7 b^10 - 40 a^5 b^12 + 22 a^3 b^14 - 
  3 a b^16, -a^10 b^8 + 9 a^8 b^10 - 29 a^6 b^12 + 40 a^4 b^14 - 
  22 a^2 b^16 + 3 b^18, 0, 0, 0, 0, 0, 
 a^12 b^12 - 11 a^10 b^14 + 46 a^8 b^16 - 90 a^6 b^18 + 81 a^4 b^20 - 
  28 a^2 b^22 + 3 b^24, -a^13 b^12 + 11 a^11 b^14 - 46 a^9 b^16 + 
  90 a^7 b^18 - 81 a^5 b^20 + 28 a^3 b^22 - 3 a b^24, 
 a^12 b^14 - 11 a^10 b^16 + 46 a^8 b^18 - 90 a^6 b^20 + 81 a^4 b^22 - 
  28 a^2 b^24 + 3 b^26, 0, 0, 0, 0, 0, -a^12 b^20 + 11 a^10 b^22 - 
  46 a^8 b^24 + 90 a^6 b^26 - 81 a^4 b^28 + 28 a^2 b^30 - 3 b^32, 
 a^13 b^20 - 11 a^11 b^22 + 46 a^9 b^24 - 90 a^7 b^26 + 81 a^5 b^28 - 
  28 a^3 b^30 + 3 a b^32, -a^12 b^22 + 11 a^10 b^24 - 46 a^8 b^26 + 
  90 a^6 b^28 - 81 a^4 b^30 + 28 a^2 b^32 - 3 b^34, 0, 0, 0, 0, 0, 
 a^10 b^30 - 9 a^8 b^32 + 29 a^6 b^34 - 40 a^4 b^36 + 22 a^2 b^38 - 
  3 b^40, -a^11 b^30 + 9 a^9 b^32 - 29 a^7 b^34 + 40 a^5 b^36 - 
  22 a^3 b^38 + 3 a b^40, 
 a^10 b^32 - 9 a^8 b^34 + 29 a^6 b^36 - 40 a^4 b^38 + 22 a^2 b^40 - 
  3 b^42, 0, 0, 0, 0, 0, -a^6 b^42 + 5 a^4 b^44 - 6 a^2 b^46 + b^48, 
 a^7 b^42 - 5 a^5 b^44 + 6 a^3 b^46 - a b^48, -a^6 b^44 + 
  5 a^4 b^46 - 6 a^2 b^48 + b^50, 0, 0, 0, 0, 0, b^56, -a b^56, b^58}

One may ask whether it is the recurrence relation of the smallest order. Clearly it is not necessarily the case. When one of $x,y,\lambda_1,\lambda_2$ is zero, the expression $f(n)=x\lambda_1^n+y\lambda_2^n$ is degenerate, and we can find a smaller recurrence relation. There can also be some cases where the relation we obtained above is not minimal, even if $x,y,\lambda_1,\lambda_2$ are nonzero. For example, when $k=4,a=4,b=1$, that is $\lambda_{1,2}=2\pm \sqrt 3$, the minimal characteristic function of $f_4(n)$ is actually $F_4(\lambda)/(\lambda+1)$. (I found this example by examining the coefficients of $\lambda_1^{sn/k}\lambda_2^{(k-s)n/k}\zeta_k^{tn}$ in the expression of $f_k(n)$, and try to find values of $\lambda_{1,2}$ to make some of them zero.)

Here is the code where I did the calculation and verification. We took $\lambda_{1,2}=2\pm \sqrt 3$, and work with the $$ F_4(\lambda)/(\lambda+1)=-\lambda ^{13}+5 \lambda ^{12}-6 \lambda ^{11}+6 \lambda ^{10}+9 \lambda ^9-69 \lambda ^8+84 \lambda ^7-84 \lambda ^6+69 \lambda ^5-9 \lambda ^4-6 \lambda ^3+6 \lambda ^2-5 \lambda +1. $$

In[91]:= (*u1=l1^(1/k), u1n=u1^n, same for u2 and u2n*)
k=4;
z:=Exp[2 Pi I/k];
getCoeff[s_,t_]:=Module[{fk},
fk=Sum[(x u1n u1^(k-r)+y u2n u2^(k-r))^r (x u1n u1^-r+y u2n u2^-r)^(k-r) Sum[(z^-r zn)^j,{j,0,k-1}]
,{r,0,k-1}];
Coefficient[Coefficient[fk,u1n^s u2n^(k-s)],zn,t]//Factor

]

In[94]:= Table[getCoeff[s,t],{s,0,k-1},{t,0,k-1}]//MatrixForm
Out[94]//MatrixForm= (4 y^4 0   0   0
((u1+u2)^2 (u1^2+u2^2)^2 x y^3)/(u1^3 u2^3) -((I (u1-u2)^2 (u1-I u2)^2 (u1+u2)^2 x y^3)/(u1^3 u2^3))    -(((u1-u2)^2 (u1^2+u2^2)^2 x y^3)/(u1^3 u2^3))  (I (u1-u2)^2 (u1+I u2)^2 (u1+u2)^2 x y^3)/(u1^3 u2^3)
((u1^2+u2^2)^2 (u1^4+4 u1^2 u2^2+u2^4) x^2 y^2)/(u1^4 u2^4) -(((u1-u2)^2 (u1+u2)^2 (u1^2+u2^2)^2 x^2 y^2)/(u1^4 u2^4))  ((u1-u2)^2 (u1+u2)^2 (u1^4-4 u1^2 u2^2+u2^4) x^2 y^2)/(u1^4 u2^4)   -(((u1-u2)^2 (u1+u2)^2 (u1^2+u2^2)^2 x^2 y^2)/(u1^4 u2^4))
((u1+u2)^2 (u1^2+u2^2)^2 x^3 y)/(u1^3 u2^3) (I (u1-u2)^2 (u1+I u2)^2 (u1+u2)^2 x^3 y)/(u1^3 u2^3)   -(((u1-u2)^2 (u1^2+u2^2)^2 x^3 y)/(u1^3 u2^3))  -((I (u1-u2)^2 (u1-I u2)^2 (u1+u2)^2 x^3 y)/(u1^3 u2^3))

)
In[95]:= polyF[k_]:=-Product[(l^k-l1^j l2^(k-j)),{j,1,k-1}] (l-l1) (l-l2);
reducedF=First@SymmetricReduction[polyF[k],{l1,l2},{4,1}]/(1+l)//Cancel;
reducedF/.l->\[Lambda]
list=CoefficientList[reducedF,l]
Out[97]= 1-5 \[Lambda]+6 \[Lambda]^2-6 \[Lambda]^3-9 \[Lambda]^4+69 \[Lambda]^5-84 \[Lambda]^6+84 \[Lambda]^7-69 \[Lambda]^8+9 \[Lambda]^9+6 \[Lambda]^10-6 \[Lambda]^11+5 \[Lambda]^12-\[Lambda]^13
Out[98]= {1,-5,6,-6,-9,69,-84,84,-69,9,6,-6,5,-1}
In[99]:= f[n_]:=x (2+Sqrt[3])^n+y (2-Sqrt[3])^n;

f[k_,n_]:=Module[{m,r},r=Mod[n,k];
m=(n-r)/k;
f[m+1]^r f[m]^(k-r)];

Do[Print[Sum[f[k,p+q] list[[p]],{p,Length[list]}]//Expand],{q,1,20}];

(* and the results are all zero*)

It's still interesting, though, to consider whether our recurrence sequence is minimal, when $x,y,a,b$ are considered algebraically independent indeterminates, i.e., the most general case.

It's also possible to give a closed form expression of $F_k(\lambda)$. We first work on the product $$ \prod_{0< j< k}(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}). $$ We use the q-binomial coefficients and the Cauchy binomial theorem $$ \prod_{p=0}^{n-1}\left(1+q^p t\right)=\sum_{p=0}^n q^{p(p-1) / 2}\binom{n}{p}_q t^p, $$ and \begin{align*} \prod_{0< j< k}\left(\lambda^k-\lambda_1^{j}\lambda_2^{k-j}\right)&=\lambda^{k(k-1)}\prod_{j=1}^{k-1}\left(1-\left(\frac{\lambda_1}{\lambda_2}\right)^j\left(\frac{\lambda_2}{\lambda}\right)^k\right)\\ &=\lambda^{k(k-1)}\sum_{p=0}^{k-1}\left(\frac{\lambda_1}{\lambda_2}\right)^{p(p-1)/2}\binom{k-1}{p}_{\lambda_1/\lambda_2}\left(-\frac{\lambda_1\lambda_2^{k-1}}{\lambda^k}\right)^p. \end{align*} where we take $n=k-1,t=-\frac{\lambda_1\lambda_2^{k-1}}{\lambda_k},q=\lambda_1/\lambda_2$.

So the conclusion is

$$ F_k(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\lambda^{k(k-1)}\sum_{p=0}^{k-1}\left(\frac{\lambda_1}{\lambda_2}\right)^{p(p-1)/2}\binom{k-1}{p}_{\lambda_1/\lambda_2}\left(-\frac{\lambda_1\lambda_2^{k-1}}{\lambda^k}\right)^p. $$

Again, we verify this is correct using Mathematica for small $k$.

In[227]:= 
verify[k_] := 
  Product[(l^k - l1^j l2^(k - j)), {j, 1, k - 1}] - 
     l^((k - 1) k) Sum[(l1/l2)^(p (p - 1)/2) QBinomial[k - 1, p, 
         l1/l2] (-l1 l2^(k - 1)/l^k)^p, {p, 0, k - 1}] // 
    FunctionExpand // Expand;

In[233]:= verify[2]

Out[233]= 0

In[228]:= verify[3]

Out[228]= 0

In[230]:= verify[4]

Out[230]= 0

In[231]:= verify[5]

Out[231]= 0

In[232]:= verify[6]

Out[232]= 0
```
$\endgroup$
7
  • 1
    $\begingroup$ Great job! Order of recurrence for $f_k(n)$ seems to be $n^2+n+2$. $\endgroup$ Commented Aug 10 at 9:29
  • 1
    $\begingroup$ Yes, to be precise, it's $k^2-k+2$. $\endgroup$ Commented Aug 10 at 13:41
  • $\begingroup$ Can someone please clarify the derivation of expression under the sentence "These combined, we know"? I am currently working on generalization for zero discriminant $a^2-4b^2$ and it might be helpful. $\endgroup$ Commented Aug 11 at 22:25
  • $\begingroup$ I am expanding the expression $f\left(\frac{n+k-r}{k}\right)^rf\left(\frac{n-r}{k}\right)^{k-r}\chi_k(n-r)$ and tracking the terms containing $n$. In order to expand them, you just need to use binomial theorem and polynomial multiplication. $\endgroup$ Commented Aug 12 at 16:25
  • 1
    $\begingroup$ yes, you are right, There is binomial coefficients in $C$. And when you are dealing with $\lambda_1=\lambda_2$ case, please be careful it has different expression. It should be $f(n)=x\lambda_1^n+yn\lambda_1^n$. $\endgroup$ Commented Aug 14 at 16:09

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.