Define an operator $L$ on, say, formal series $f(x)$ with $f(0)=1$ by requiring that $L(f)=F$ is the solution of the functional equation $$ F(xf(x))=f(x). $$
Some examples: \begin{align*} L(1)&=1;\\ L\left(\frac1{1+cx}\right)&=1-cx;\\ L(1-cx)&=\frac{1+\sqrt{1-4cx}}2=1-\sum_{n=0}^\infty C_n(cx)^{n+1} \end{align*} where $C_n$ are the Catalan numbers; \begin{align*} L\left(\frac{1+\sqrt{1-4x}}2\right)&=\frac{1}{3} \left(1+2 \cos \left(\frac{1}{3} \arccos\left(1-\frac{27 x}{2}\right)\right)\right)\\&=1-x-2x^2-7x^3-...-\frac{\binom{3n+1}n}{n+1}x^{n+1}-...\\ &=\text{ solution of $F(x)^3-F(x)^2+x=0$} \end{align*} (see e. g. A006013 on OEIS);
\begin{align*} L\left(\frac1{(1+ax)(1+bx)}\right)&=\frac{1-(a+b)x+\sqrt{1-2(a+b)x+((a-b)x)^2}}2\\ &=1-(a+b)x-\sum_{n>0}\sum_{k=1}^n\frac1n\binom nk\binom n{k-1}a^kb^{n+1-k}x^{n+1} \end{align*} (Narayana numbers);
$$ L\left(\frac1x\ln\frac1{1-x}\right)=\frac{xe^x}{e^x-1}=1+\frac x2+\frac{x^2}{12}-\frac{x^4}{720}+...+\frac{B_nx^n}{n!}+... $$ with $B_n$ the Bernoulli numbers; $$ L(e^x)=e^{W(x)} $$ where $W(x)$ is the Lambert function.
Have the properties of this (or similar) operator been studied before?
Specifically I would like to find out what can be said about the value of this operator on the series $$ \sum_{n\geqslant0}(C_nx^n)^2=\frac1{4x^2}\left({}_2F_1\left(-\frac12,-\frac12;1,16x^2\right)-1\right) $$ with $C_n$ the Catalan numbers. This is the generating function of irreducible meander systems as computed in
Lando, S. K.; Zvonkin, A. K., Meanders, Sel. Math. Sov. 11, No. 2, 117-144 (1992). ZBL0792.05006.