Let $A, B \in {\Bbb R}^{2 \times 2}$ be two self-adjoint matrices. I am interested in the following block matrix
$$ M = \begin{bmatrix} A & B & B & \dots & B \\ B & A & B & \dots & B \\ B & B & A & \dots & B \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B & B & B & \dots & A \end{bmatrix}$$
of size $2m \times 2m$. I am curious if there is a way to diagonalize this matrix explicitly in the sense that one can reduce it to the matrices $A$ and $B$?