1
$\begingroup$

Define $$f(k) = - \frac{\Gamma(\frac{k-1}{2}) \pi^{3/2}}{\Gamma(\frac{k}{2}) 2^{\frac{k-1}{2}}} \sum_{m=0}^{\lfloor\frac{k-3}{4}\rfloor} \binom{\frac{k-1}{2}}{2m+1} \binom{2m}{m} 4^{-m},$$ And let $$M(2n+1)= \sum_{k=0}^{n-1} (-1)^{n-1-k} f(2k+5) \binom{n-1}{k},$$ $$F(2n+1)= \sum_{k=0}^{n-1} (-1)^{n-1-k} f(2k+7) \binom{n-1}{k}.$$ Prove that $$F(2n+1)= \frac{n^2+3n+3}{(n+1)(2n+3)}M(2n+1).$$ I have verified that for $n=1,2,3,4,5$ the assertion holds, but I don’t know a general strategy to prove it for all $n$. One may use induction, but the steps are not completely clear to me.

$\endgroup$
6
  • $\begingroup$ Can you share how this identity arises? $\endgroup$ Commented Feb 23 at 1:57
  • 1
    $\begingroup$ Why do you want a proof specifically by induction? Would other means count? $\endgroup$ Commented Feb 23 at 4:02
  • $\begingroup$ @MaxAlekseyev absolutely other methods are welcome. I have a feeling that one may use generating functions to rewrite $f(k)$, but I am not familiar with these techniques. $\endgroup$ Commented Feb 23 at 8:21
  • 1
    $\begingroup$ The function $f(k)$ arises when I integrate the following function, $\int_0^{s/2} \frac{u^{n-1} + u^{n-2}(s - u) + \cdots + (s - u)^{n-1}}{\sqrt{u(s - u)}} \, du $, and the result is $\frac{\pi s^{n-1}}{2^{n}} \sum_{m=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n}{2m+1} \binom{2m}{m} \frac{1}{4^{m}} $. $\endgroup$ Commented Feb 23 at 8:29
  • 4
    $\begingroup$ Then why does the title say "Prove by induction..."? $\endgroup$ Commented Feb 23 at 11:53

2 Answers 2

4
$\begingroup$

Here's a partial solution, where I use generating functions and reduce the proof to an integral identity, which I could not prove. Since the proof is quite involved, please let me know if anything is unclear.


Let $\overline M(n-1) := M(2n+1), \overline F(n-1) := F(2n+1)$. By inspecting the definitions and using the identity $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$, it is not hard to see that $\overline F(n) = \overline M(n) + \overline M(n+1)$. Hence, we need to prove $$ \overline F(n) = \frac {(n+1)^2+3(n+1)+3}{(n+2)(2(n+1)+3)}\overline M(n) = \frac {n^2+5n+7}{2n^2+9n+10}\overline M(n), $$ which, after rearranging and substituting, becomes $$(2n^2+9n+10)\overline M(n+1) \overset{?}{=} -(n^2+4n+3)\overline M(n).$$


Given a sequence $a(n), n\ge 0$, its exponential generating function is the formal power series $$\mathrm{EGF}[a(n)] := \sum_{n\ge 0} a(n) \frac{x^n}{n!}.$$ It can be shown that that $\mathrm{EGF}[a(n)]\cdot\mathrm{EGF}[b(n)] = \mathrm{EGF}[c(n)]$, where $$c(n) := \sum_{k=0}^n \binom{n}{k} a(k) b(n-k),$$ and that $\mathrm{EGF}[na(n)] = x\cdot\mathrm{EGF}[a(n+1)] = x D(\mathrm{EGF}[a(n)])$, where $D$ denotes differentiation. In general, if $p(n)$ is a polynomial, then formally $\mathrm{EGF}[p(n)a(n)] = p(xD)\,\mathrm{EGF}[a(n)]$.


If we consider the exponential generating function $\mu(x) := \mathrm{EGF}[\overline M(n)]$, this is further equivalent to $$ 2 (xD)^2\mu'(x) + 9xD\mu'(x) + 10\mu'(x) = -(xD)^2\mu(x) - 4xD \mu(x) - 3\mu(x), $$ or, after expanding the derivatives, $$ 2x\mu''' + (x^2+11x)\mu'' + (5x+10)\mu' + 3\mu = 0, \tag{$1$} $$ with initial conditions \begin{align} \mu(0) &= \overline M(0) = -2\pi/3, \\ \mu'(0) &= \overline M(1) = \pi/5, \\ \mu''(0) &= \overline M(2) = -8\pi/105. \end{align} Using Mathematica, we find the unique solution to this initial value problem: $$ \mu(x) = -\frac{\pi}{4x}\left[2+\sqrt{\frac{2\pi}{x}}e^{-x/2}(x-1)\operatorname{erfi}\left(\sqrt{x/2}\right)\right],\tag{$2$} $$ where $\operatorname{erfi}$ is the imaginary error function, and the solution can be checked against $(1)$ by using the identity $\frac{d}{dx}\operatorname{erfi}\left(\sqrt{x/2}\right) = e^{x/2}/\sqrt{2\pi x}$.


Now notice that \begin{align} \mu(x) &= \mathrm{EGF}[(-1)^n] \cdot \mathrm{EGF}[f(2n+5)] \\ &= \left(\sum_{k\ge 0} \frac{(-x)^{k}}{k!} \right) \mathrm{EGF}[f(2n+5)] \\ &= e^{-x}\, \mathrm{EGF}[f(2n+5)], \end{align} so we need to prove the equality (in the field of Puiseux series): $$ \mathrm{EGF}[f(2n+5)] \overset{?}{=} -\frac{\pi}{4x}\left[2e^x+\sqrt{\frac{2\pi}{x}}e^{x/2}(x-1)\operatorname{erfi}\left(\sqrt{x/2}\right)\right].\tag{$3$} $$ A rather long, but mundane, computation shows that the right-hand side is the $\mathrm{EGF}$ of the sequence $$ g(n) := -\pi 2^{-n}\sum_{m=0}^n\binom{n}{m} \frac{2m+2}{(2m+1)(2m+3)} \overset{?}{=} f(2n+5). $$ Let us compute its ordinary generating function: \begin{align} \mathrm{GF}[g(n)] :\!\!&= -\pi \sum_{n\ge 0} x^n 2^{-n}\sum_{m\ge 0}\binom{n}{m} \frac{2m+2}{(2m+1)(2m+3)} \\ &= -\frac{\pi}{2} \sum_{m\ge 0} \left[\frac{1}{2m+1}+\frac{1}{2m+3}\right] \sum_{n\ge 0}\binom{n}{m} (x/2)^n \\ &= -\frac{\pi}{2-x} \sum_{m\ge 0} \left[\frac{1}{2m+1}+\frac{1}{2m+3}\right] \left(\frac{x}{2-x}\right)^m \\ &= -\frac{\pi}{x}\left[\frac{1}{\sqrt{x(2-x)}} \log\left(\frac{\sqrt{2-x}+\sqrt{x}}{\sqrt{2-x}-\sqrt{x}}\right)\right]. \end{align}


Now we can write, using the integral provided in Peter's comment (with $s=1$) and doing some manipulations with the gamma functions, $$ f(2n+1) = -\frac{4^n}{n\binom{2n}{n}}\int_0^{1/2}\frac{(1-u)^n-u^n}{(1-2u)\sqrt{u(1-u)}}\,du,\qquad n \ge 1. $$ We can define $\mathrm{GF}[f(2n+1)]$ by starting the sum at $n = 1$. If we take advantage of the integral's symmetry ($u\leftrightarrow 1-u$) and apply Theorem 2.2 in this paper, we have \begin{align} \mathrm{GF}[f(2n+1)] &= \int_0^1 \frac{1}{(1-2u)\sqrt{u(1-u)}}\tag{$4$} \\ &\cdot \left[\sqrt{\frac{xu}{1-xu}} \arctan \sqrt{\frac{xu}{1-xu}} -\sqrt{\frac{x(1-u)}{1-x(1-u)}} \arctan \sqrt{\frac{x(1-u)}{1-x(1-u)}} \right]\, du. \end{align} Using the fact that $f(3) = -\pi$, it suffices to prove that this equals $$ \mathrm{GF}[g(n)]\,x^2+f(3)\,x = \pi\sqrt{\frac{x}{2-x}} \log \left(\frac{\sqrt{2-x}-\sqrt{x}}{\sqrt{2-x}+\sqrt{x}}\right). $$ Numerically, the identity seems to hold. I suspect that it can be proved by contour integration, but the integrand has several branch cuts, which prevent a simple application of the residue theorem.

$\endgroup$
4
  • $\begingroup$ Thanks! would you mind explaining a bit more the lines at (1) and above? How does the function $\phi$ arise? $\endgroup$ Commented Feb 24 at 16:48
  • $\begingroup$ @PeterLiu Sorry, that was a typo. I fixed it. $\endgroup$ Commented Feb 24 at 16:52
  • $\begingroup$ And how does the third derivative $\mu'''$ arise? Thanks! $\endgroup$ Commented Feb 24 at 17:04
  • $\begingroup$ @PeterLiu Another typo: since we have $\overline M(n+1)$ on the left hand side, the equation before (1) should have $\mu'$ on the left. $\endgroup$ Commented Feb 24 at 17:17
0
$\begingroup$

To complete the final step in Jacopo's answer, let \begin{align*}F(x):=&\int_0^1 \frac{1}{(1-2u)\sqrt{u(1-u)}}\\ & \cdot \left[\sqrt{\frac{xu}{1-xu}} \arctan \sqrt{\frac{xu}{1-xu}} - \sqrt{\frac{x(1-u)}{1-x(1-u)}} \arctan \sqrt{\frac{x(1-u)}{1-x(1-u)}}\right] du, \end{align*} and let \begin{align*} R(x) := \pi \sqrt{\frac{x}{2-x}} \log \left(\frac{\sqrt{2-x} - \sqrt{x}}{\sqrt{2-x} + \sqrt{x}}\right), \quad \left\lvert x \right\rvert <1 \end{align*} We will show that $F(0) = R(0) = 0$ and $F'(x) = R'(x)$ for $\left\lvert x \right\rvert <1 $. Therefore, $F(x) - R(x) \equiv 0$ on $\left\lvert x \right\rvert <1$. Indeed, set \begin{align*} A_x(u) := \sqrt{\frac{xu}{1-xu}}\arctan \sqrt{\frac{xu}{1-xu}},\quad B_x(u) := \sqrt{\frac{x(1-u)}{1-x(1-u)}} \arctan \sqrt{\frac{x(1-u)}{1-x(1-u)}}. \end{align*} Note that $B_x(u) = A_x(1-u)$, so the bracket in the integrand of $F(x)$ is $A_x(u) - B_x(u) = A_x(u) - A_x(1-u)$. For small $x$, $A_x(u) - B_x(u) \sim x(2u-1)$. Hence, \begin{align*} F(x) \sim - \frac{x}{\sqrt{u(1-u)}}. \end{align*} So near $x = 0$, \begin{align*} F(x) \sim -x \int_0^1 \frac{dx}{\sqrt{u(1-u)}} = -\pi x, \end{align*} which means that $F(0) = \lim_{x \to 0}F(x) = 0$. Next, we use the expansion \begin{align*} \log \frac{1-y}{1+y} = -2y + O(y^3), \quad y \to 0, \end{align*} with $y = \sqrt{x/(2-x)}$, we know that $R(x) \sim \pi x$ as $x \to 0$, so $R(0) = 0$ as well. Furthermore, \begin{align*} \frac{\partial A_x(u)}{\partial x} = \frac{u}{2(1-xu)} + \frac{\sqrt{u}}{2\sqrt{x}(1-xu)^{3/2}} \arctan \sqrt{\frac{xu}{1-xu}}, \end{align*} and \begin{align*} \frac{\partial B_x(u)}{\partial x} = \frac{\partial A_x(1-u)}{\partial x}, \end{align*} so that \begin{align*} F'(x) = \int_0^1 \frac{1}{(1-2u)\sqrt{u(1-u)}} \left(\frac{\partial A_x(u)}{\partial x} - \frac{\partial B_x(u)}{\partial x}\right) du. \end{align*} We split the above into the ''algebraic'' part and ''arctan'' part, $F'(x) = I_1(x)+ I_2(x)$ where \begin{align*} I_1(x) &= \frac{1}{2} \int_0^1 \frac{1}{(1-2u)\sqrt{u(1-u)}} \left(\frac{u}{1-xu} - \frac{1-u}{1-x(1-u)}\right) du,\\ I_2(x) &= \frac{1}{2\sqrt{x}} \int_0^1 \frac{1}{(1-2u)\sqrt{u(1-u)}} \\ &\cdot \left( \frac{\sqrt{u}}{(1-xu)^{3/2}} \arctan \sqrt{\frac{xu}{1-xu}} - \frac{\sqrt{1-u}}{(1-x(1-u))^{3/2}}\arctan \sqrt{\frac{x(1-u)}{1-x(1-u)}} \right) du. \end{align*} Note that $I_2(x)$ vanishes due to symmetry. Hence, $F'(x) = I_1(x)$. Evaluating the integral we get \begin{align*} F'(x) &= - \frac{1}{2}\int_0^1 \frac{du}{\sqrt{u(1-u)}(1-xu)(1-x(1-u))}\\ &= - \int_0^{\pi/2} \frac{d\theta}{1-x+ \frac{x^2}{4}\sin^2(2\theta)}. \end{align*} Now, using the identity \begin{align*} \int_0^{\pi/2} \frac{d\theta}{a^2 + b^2 \sin^2 \theta} = \frac{\pi}{2ab}, \quad a,b>0 \end{align*} we have \begin{align*} F'(x) = - \int_0^{\pi/2} \frac{d\theta}{A^2 + B^2 \sin^2 \theta} = \frac{\pi}{4AB} \end{align*} where $A = \sqrt{1-x}$ and $B = x/2$. This means that \begin{align*} F'(x) = -\frac{\pi}{2} \cdot \frac{1}{x\sqrt{1-x}}. \end{align*} On the other hand, for $R(x)$, we rewrite the log using $\log \frac{1-r}{1+r} = -2 \text{arctanh} r$, $\left\lvert x \right\rvert <1 $. With $r = \sqrt{\frac{x}{2-x}}$, we get \begin{align*} R(x) = - 2\pi \sqrt{\frac{x}{2-x}} \text{arctanh} \sqrt{\frac{x}{2-x}}, \end{align*} then a straightforward differentiation gives $F'(x) = R'(x)$ for $\left\lvert x \right\rvert <1$. The proof is complete.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.