Can we generate code for semi-relative local sensitivity for an ODE mathematical model?
This is the ODE system I have:
eqns = {
T'[t] == Q - α0 (T[t] - T0) - (km T[t])/(k11 + k12 T[t]),
T1'[t] == (km T[t])/(k11 + k12 T[t]) - α1 T1[t],
m'[t] == q - α2 (m[t] - m0) + k1 m[t] n[t] - k0 m[t] T1[t],
n'[t] == q1 - β n[t] - k1 m[t] n[t],
C1'[t] == q2 - β1 C1[t] - λ1 k1 m[t] n[t] - λ km T[t]/(k11 + k12 T[t])
};
initConds = {
T[0] == T0, T1[0] > 0, m[0] == m0, n[0] > 0, C1[0] > 0
};
sol = NDSolve[{eqns, initConds}, {T, T1, m, n, C1}, {t, 0, tf}];
As one can see in the plots, they plotted (a $\frac{\partial T}{\partial a}$). That is what I want to plot. I need the idea to proceed