(Answer:$10^o $)
I have the resolution below but I would like a geometric resolution by auxiliary lines
Sine Theorem in $\triangle{BCD}$:
$$\frac{BC}{BD}=\frac{\sin(180−3\theta)}{\sin(2\theta)}=\frac{\sin(3\theta)}{\sin(2\theta)}$$
Sine Theorem in $\triangle{BDA}$:
$$\frac{BC}{BD}=\frac{AD}{BD}=\frac{\sin(180−7\theta)}{\sin(4\theta)}=\frac{\sin(7\theta)}{\sin(4\theta)}=\frac{\sin(7\theta)}{2\sin(2\theta)\cos(2\theta)}$$
$$\angle{ABD}=180−4\theta−\angle{BDA}=180$$
Sine Theorem in $\triangle{BDA}$:
$$\theta−(180−\angle{BDC})=180−4\theta−3\theta=180−7\theta$$
Equating both equations:
$$2\sin(3\theta)\cos(2\theta)=\sin(7\theta)$$
$$\sin(5\theta)+\sin(\theta)=\sin(7\theta)$$
$$\sin(\theta)=\sin(7\theta)−\sin(5\theta)$$
$$\sin(\theta)=2\cos(6\theta)\sin(\theta)$$
$$\cos(6\theta)=1/2⇒6\theta=60⇒θ=10$$


