2
$\begingroup$

In a triangle $ABC, AB=AC$, $BC=22\sqrt3$, $\cos A=-\frac{17}{225}$. $D$ is a point on $AC$ such that $AD<DC$ and $P$ is the point on the segment $BD$ such that $\angle APC = 90^{\circ}$. Given $\angle ABD=\angle BCP$, find $BD$.

Here's a diagram of what it's like I guess:

triangle_diagram

With reference to the diagram, $\cos (x+y)=\frac{11}{15}$, after taking $\cos (180^{\circ}-A)$ and so on. I kind of did cosine rule for both triangles $ABD$ and $BCD$ to get expressions for $BD^2$ and tried to sub in $\cos(x+y)$ but that is quite messy and doesn't really get anything. I also tried Stewart's theorem for $BD^2$. Are there any similar triangles or auxiliary lines that I'm not seeing? Can someone give a hint on this? Thanks.

$\endgroup$

2 Answers 2

2
$\begingroup$

enter image description here

Hint:

\begin{align} \triangle BCD&\cong \triangle CPD ,\\ \frac{|BD|}{|CD|} &= \frac{|CD|}{|PD|} =\frac{|BC|}{|PC|} \end{align}

\begin{align} \cos\tfrac\alpha2&=\frac{2\sqrt{26}}{15} =\sin\beta ,\\ \cos\beta&=\frac{11}{15} ,\\ |AB|=|AC|&=\frac{|BC|}{2\cos\beta} =15\sqrt3 ,\\ |AM|=|MC|=|MP|&=\tfrac12|AC|=\tfrac{15\sqrt3}2 ,\\ \triangle CDP:\quad \frac{|CD|}{|PD|} &=\frac{\sin\beta}{\sin(\beta-\phi)} ,\\ \triangle PMD:\quad |PD| &= \frac{|PC|\sin(\beta-\phi)}{\sin(2\beta-\phi)} ,\\ \frac{|BD|}{|CD|} &=\frac{|BC|}{|PC|} \\ &=\frac{|BC|}{|AC|\cos(\beta-\phi)} =\frac{22}{15\cos(\beta-\phi)} . \end{align}

From \begin{align} \frac{\sin\beta}{\sin(\beta-\phi)} &=\frac{22}{15\cos(\beta-\phi)} ,\\ \phi& =\beta-\arctan(\tfrac{15\sin\beta}{22}) =\beta-\arctan(\tfrac{\sqrt{26}}{11}) \end{align}

\begin{align} \frac{|BD|}{|CD|} &=\frac{22}{15\cos(\arctan(\tfrac{\sqrt{26}}{11}))} =\frac{14\sqrt3}{15} ,\\ \triangle CDP:\quad |PD| &= \frac{|AC|\cos(\beta-\phi)\sin(\beta-\phi)}{\sin(2\beta-\phi)} . \end{align}

After simplification, $|PD|=\tfrac{75}7$ and then

\begin{align} \frac{|BD|}{|CD|} \cdot \frac{|CD|}{|PD|} &=\left(\frac{|BD|}{|CD|}\right)^2 =\frac{196}{75} =\frac{|BD|}{|PD|} ,\\ |BD|&=\frac{196}{75} \cdot\frac{75}7 =28 . \end{align}

$\endgroup$
1
  • $\begingroup$ Ok I see, thank you. $\endgroup$ Commented Jun 20, 2018 at 10:13
1
$\begingroup$

We indicate with $\alpha$ the angle $\angle BAC$, so $cos(\alpha)=-\frac{17}{225}$. The angle $\angle ABC=\frac{\pi}{2}-\frac{\alpha}{2}$ and the angle $\angle PCA=\angle PBC= (\frac{\pi}{2}-\frac{\alpha}{2})-x$ but $APC$ is rectangle and so $\angle PAC=\frac{\pi}{2}- \angle PCA= \frac{\pi}{2}- (\frac{\pi}{2}-\frac{\alpha}{2})+x$ $= \frac{\alpha}{2}+x $

So

$\angle PAD= \frac{\alpha}{2}+x $ And $\angle PAB=\alpha-(\frac{\alpha}{2}+x)= \frac{\alpha}{2}-x$ And $\angle PDA=\angle BDA=\pi-\alpha-x$

$PD=\frac{sin(\frac{\alpha}{2}+x)}{sin(\pi-\alpha-x)}AP= \frac{sin(\frac{\alpha}{2}+x)}{sin(\alpha+x)}AP=$ $ \frac{sin(\frac{\alpha}{2}+x)}{sin(\alpha+x)}sin(\frac{\alpha}{2}+x)AC= \frac{sin^2(\frac{\alpha}{2}+x)}{sin(\alpha+x)}AC= $ $\frac{sin^2(\frac{\alpha}{2}+x)}{sin(\alpha+x)}sin(\frac{\pi}{2}-\frac{\alpha}{2})BC $

and

$BP=\frac{sin(\frac{\alpha}{2}-x)}{sin(x)}AP= \frac{sin(\frac{\alpha}{2}-x)}{sin(x)} sin(\frac{\alpha}{2}+x)AC= $ $\frac{sin(\frac{\alpha}{2}-x)}{sin(x)} sin(\frac{\alpha}{2}+x)sin(\frac{\pi}{2}-\frac{\alpha}{2})BC $

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.