Why is it that the following limit is defined if $\lim_{x\to a}f(x) = \lim_{x\to a}g(x) = 0$?
$$\lim_{x\to a}\frac{f(x)}{g(x)}$$
In contrast, the limit isn't defined if $\lim_{x\to a}f(x) \neq 0$ but $\lim_{x\to a}g(x) = 0$. Why this discrepancy?
Using the epsilon delta definition, I can prove the following:
$$\lim_{x\to a}\frac{1}{g(x)} = \frac{1}{\lim_{x\to a}g(x)}\;\text{provided that}\;\lim_{x\to a}g(x) \neq 0$$
I can also prove the following:
$$\lim_{x\to a}f(x) \cdot h(x) = \lim_{x\to a}f(x) \cdot \lim_{x\to a}h(x)$$
Therefore , taking $h(x) = 1/g(x)$ :
$$\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\left[f(x) \cdot \frac{1}{g(x)}\right] = \lim_{x\to a}f(x) \cdot \lim_{x\to a}\frac{1}{g(x)}$$
Now, provided that $\lim_{x\to a}g(x) \neq 0$, we can deduce/evaluate the following:
$$\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}$$
So how come this limit is defined if $\lim_{x\to a}g(x) = 0$ provided that $\lim_{x\to a}f(x) = 0$? This doesn't make any sense to me.