I need to find the vector $\hat{n}=[n_1 \; n_2 \; \cdots \; n_N]$, all integers,such that $1\leq n_i \leq Z$, $\forall i$ (with $Z$ also integer) that minimizes the following function:
$F=\frac{1}{N}\sum^N_{i=1}\left(1-\prod^N_{j=1,j\neq i}\left(1-\alpha_{ij}\frac{n_j}{Q}\right)\right)^{n_i}$,
where $Q>>Z$ is also an integer, and $0\leq \alpha_{ij}\leq 1$, $\forall i$ $\forall j$.
Any hint on promising approaches for solving this problem?