Let $X \sim F(;\theta)$ and $Y \sim G(;\eta)$ be two independent continuous random variables. The greek symbols represent the parameters of those distributions. I can easily sample from these distributions.
Let $(\tilde{X},\tilde{Y}) \sim H(;\kappa)$. These variables are not independent. In fact, I know the conditional distribution of $\tilde{X}\mid \tilde{Y}$ and the marginal distribution of $\tilde{Y}$.
For specific parameter values $\theta$ and $\eta$, how can I find the parameters $\kappa$ that better approximate (in any sense computationally feasible, KL divergence, TV, etcetera) the distribution of $(X,Y)$?