I am building computer vision models on data that exists in a continuum. For example, imagine I'm trying to do semantic segmentation on cars. Some of the labels are distinct, like "chipped paint", but others exist on a continuum, like "not dirty", "a little dirty", "moderately dirty", or "filthy". I can create descriptions of each label, for example:
- "a little dirty" means having few visible stains or dust
- "moderately dirty" means having multiple stains and a significant amount of dust.
But this doesn't really fix the problem. I'm curious about what the best practices are here. One option is to have the classes mentioned above. The problem with this is if something is halfway between "a little dirty" and "moderately dirty", how should I label that pixel?