I am using Manipulate to change a parameter in a system of differential equations solved with NDSolve in Mathematica. The system of equations is as follows:

I am using Manipulate to allow interactive changes to the parameter 𝑑. While the plot is correctly generated when first run, changing the value of 𝑑 using the slider in Manipulate does not update the plot. This is the code that I used:
ClearAll[S, Ih, Y];
ClearAll[r, \[Gamma], p, c, \[Alpha], k, \[Delta], \[Xi], \[Lambda],
d, A1, A2, A3, A4, Jacobi, jacobian[S_, Ih_, Y_]];
r = 1.5;
\[Gamma] = 0.2;
p = 0.9;
c = 3;
\[Alpha] = 6;
k = 50;
\[Delta] = 0.1;
\[Eta] = 0.01;
\[Lambda] = 1;
d = 0.022;
Manipulate[
Module[{plt2, plt3, plt4, sol, S0 = SS0, Ih0 = IhIh0, Y0 = YY0}, sol =
NDSolve[{S'[t] ==
1.5*S[t]*(1 - (S[t] + Ih[t])/50) - 1*S[t]*Ih[t] - (
0.9*(S[t])^2*Y[t])/(S[t] + 6*Ih[t]),
Ih'[t] ==
1*S[t]*Ih[t] - (3*(Ih[t])^2*Y[t])/(S[t] + 6*Ih[t]) - 0.2*Ih[t],
Y'[t] == (0.1*0.9*(S[t])^2*Y[t])/(S[t] + 6*Ih[t]) - (
0.01*3*(Ih[t])^2*Y[t])/(S[t] + 6*Ih[t]) - 0.022*Y[t],
S[t /; t <= 0] == S0, Ih[t /; t <= 0] == Ih0,
Y[t /; t <= 0] == Y0}, {S[t], Ih[t], Y[t]}, {t, 0, 500}];
plt2 =
ParametricPlot[{t, S[t]} /. sol, {t, 0, 500}, PlotRange -> All,
AspectRatio -> 1, PlotStyle -> {Red, Thick}, Axes -> {t, S}];
plt3 =
ParametricPlot[{t, Ih[t]} /. sol, {t, 0, 500}, PlotRange -> All,
AspectRatio -> 1, PlotStyle -> {Green, Thick}, Axes -> {t, Ih}];
plt4 =
ParametricPlot[{t, Y[t]} /. sol, {t, 0, 500}, PlotRange -> All,
AspectRatio -> 1, PlotStyle -> {Blue, Thick}, Axes -> {t, Y}];
Show[plt2, plt3, plt4, ImageSize -> {300, 300}]],
Style["Persamaan diferensial :", Bold],
Style["S'=rS(1-\!\(\*FractionBox[\(S + I\), \(K\)]\))-\[Lambda]SI-\!\
\(\*FractionBox[\(\*SuperscriptBox[\(pS\), \(2\)] Y\), \(S + \
\[Alpha]I\)]\)", Bold],
Style["I'=\[Lambda]SI-\!\(\*FractionBox[\(\*SuperscriptBox[\(cI\), \
\(2\)] Y\), \(S + \[Alpha]I\)]\)-\[Gamma]I", Bold],
Style["Y'=\!\(\*FractionBox[\(\*SuperscriptBox[\(\[Delta]pS\), \
\(2\)] Y\), \(S + \
\[Alpha]I\)]\)-\!\(\*FractionBox[\(\*SuperscriptBox[\(\[Eta]cI\), \(2\
\)] Y\), \(S + \[Alpha]I\)]\)-dY", Bold],
Delimiter,
Style["parameters", Bold, 10], {{d, 0.022, "d"}, 0, 3, 0.1,
ImageSize -> Small, Appearance -> "Labeled"},
Delimiter,
Style["initial conditions", Bold, 10],
{{SS0, 4, "S0"}, 0, 20, .01, ImageSize -> Small,
Appearance -> "Labeled"},
{{IhIh0, 1, "Ih0"}, 0, 20, .01, ImageSize -> Small,
Appearance -> "Labeled"},
{{YY0, 1, "Y0"}, 0, 20, .01, ImageSize -> Small,
Appearance -> "Labeled"},
ControlPlacement -> Left, SynchronousUpdating -> False]```
However if I manually change the value of 𝑑 within the code, the plot updates as expected.
This is the code where I have manually changed the value of d:

Here are the graphs for comparison between the three cases.
image A shows the initial graph where 𝑑=0.022.
image B is the graph after I adjusted the slider in Manipulate to set 𝑑=1.6 (as can be seen, there is no change in the graph).
image C is the graph obtained by manually changing the value of 𝑑 in the code to d=1.6. 

din your code but instead have hardcoded the value of0.022in your code:Y'[t] == (0.1*0.9*(S[t])^2*Y[t])/(S[t] + 6*Ih[t]) - (0.01*3*(Ih[t])^2* Y[t])/(S[t] + 6*Ih[t]) - 0.022*Y[t]. Change it toY'[t] == (0.1*0.9*(S[t])^2*Y[t])/(S[t] + 6*Ih[t]) - (0.01*3*(Ih[t])^2* Y[t])/(S[t] + 6*Ih[t]) - d*Y[t]$\endgroup$