We use the following formula:
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)v(N+d) = &
\left( N-1 \right)v(N)
+\sum_{i=N+1}^{N+d} \left( x_i - \frac{1}{d}\sum_{j=N+1}^{N+d} x_{j} \right)^2
\\ &+\frac{d N}{N+d}\left( Y(N)-\frac{1}{d}\sum_{j=N+1}^{N+d} x_{j} \right)^2 .
\end{aligned}
\end{equation}
Taking covariance with respect to (v(N)) and using bilinearity and independence:
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)] =
\left( N-1 \right)\mathrm{Var}[v(N)]
+\frac{dN}{N+d}\mathrm{Cov}\left[
\left( Y(N)-\frac{1}{d}\sum_{j=N+1}^{N+d} x_{j} \right)^2, v(N)
\right].
\end{aligned}
\end{equation}
Expanding the square and using independence again:
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)] =
\left( N-1 \right)\mathrm{Var}[v(N)]
\\+\frac{dN}{N+d}\left(
\mathrm{Cov}[Y^2(N),v(N)]
- 2\mu\,\mathrm{Cov}[Y(N),v(N)]
\right).
\end{aligned}
\end{equation}
We isolate the covariance terms:
\begin{equation}
\begin{aligned}
\mathrm{Cov}[Y^2(N),v(N)] &=
\mathbb{E}[Y^2(N)v(N)] - \mathbb{E}[Y^2(N)]\mathbb{E}[v(N)]
\\ &= \mathbb{E}[Y^2(N)v(N)] - \left( \frac{\sigma^2}{N}+\mu^2 \right)\sigma^2,
\\
\mathrm{Cov}[Y(N),v(N)] &=
\mathbb{E}[Y(N)v(N)] - \mathbb{E}[Y(N)]\mathbb{E}[v(N)]
\\ &= \mathbb{E}[Y(N)v(N)] - \mu\sigma^2 .
\end{aligned}
\end{equation}
Substitute into the covariance expression:
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)]
&= \left( N-1 \right)\mathrm{Var}[v(N)]
\\ &\quad+\frac{dN}{N+d}
\left( \mathbb{E}[Y^2(N)v(N)]-2\mu \mathbb{E}[Y(N)v(N)]
-\frac{\sigma^4}{N}+\mu^2\sigma^2 \right).
\end{aligned}
\end{equation}
Observe that
\begin{equation}
\mathbb{E}[Y^2(N)v(N)]-2\mu \mathbb{E}[Y(N)v(N)]
= \mathbb{E}[(Y(N)-\mu)^2 v(N)] - \mu^2\sigma^2.
\end{equation}
Thus
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)]
= \left( N-1 \right)\mathrm{Var}[v(N)]
+\frac{dN}{N+d}\left( \mathbb{E}[(Y(N)-\mu)^2v(N)] - \frac{\sigma^4}{N} \right).
\end{aligned}
\end{equation}
Using the variance–mean decomposition:
\begin{equation}
(N-1)v(N)
= \sum_{i=1}^N (x_i-Y(N))^2
= \sum_{i=1}^N ((x_i-\mu)-(Y(N)-\mu))^2,
\end{equation}
so
\begin{equation}
v(N)=\frac{1}{N-1}\sum_{i=1}^N (x_i-\mu)^2
-\frac{N}{N-1}(Y(N)-\mu)^2.
\end{equation}
Therefore,
\begin{equation}
\mathbb{E}[(Y(N)-\mu)^2 v(N)]
= \frac{1}{N-1}\mathbb{E}\left[(Y(N)-\mu)^2\sum_{i=1}^N (x_i-\mu)^2\right]
-\frac{N}{N-1}\mathbb{E}[(Y(N)-\mu)^4].
\end{equation}
Compute the first expectation term:
\begin{equation}
\begin{aligned}
\frac{1}{N-1}\mathbb{E}\left[(Y(N)-\mu)^2\sum_{i=1}^N (x_i-\mu)^2\right]
&= \frac{1}{N^2(N-1)}
\mathbb{E}\left[
\left( \sum_{j=1}^N (x_j-\mu) \right)^2
\sum_{i=1}^N (x_i-\mu)^2
\right].
\end{aligned}
\end{equation}
Expanding the quadratic:
\begin{equation}
\begin{split}
\left( \sum_{j=1}^N (x_j-\mu) \right)^2\sum_{i=1}^N (x_i-\mu)^2
&= \sum_{i=1}^N (x_i-\mu)^4
+ \sum_{i\neq j}(x_i-\mu)^2(x_j-\mu)^2
\\
&\quad + 2\sum_{i\neq j}(x_i-\mu)^3(x_j-\mu)
+ 2\!\!\sum_{\substack{i\neq j \\ j\neq k \\ i\neq k}}\!(x_i-\mu)^2(x_j-\mu)(x_k-\mu).
\end{split}
\end{equation}
Since (\mathbb{E}[x_i-\mu]=0), cross-terms vanish, so
\begin{equation}
\begin{split}
\mathbb{E}\left[\left( \sum_{j=1}^N (x_j-\mu) \right)^2\sum_{i=1}^N (x_i-\mu)^2\right]
= N\mu_4 + N(N-1)\left( \sigma^2 \right)^2 .
\end{split}
\end{equation}
Next, expand the quartic term:
\begin{equation}
(Y(N)-\mu)^4
= \frac{1}{N^4}\sum_{i=1}^N(x_i-\mu)^4
+\frac{4}{N^4}\sum_{i<j}(x_i-\mu)^3(x_j-\mu)
+\frac{6}{N^4}\sum_{i<j}(x_i-\mu)^2(x_j-\mu)^2.
\end{equation}
Hence,
\begin{equation}
\mathbb{E}[(Y(N)-\mu)^4]
= \frac{1}{N^3}\left( \mu_4 +3(N-1)\sigma^4 \right).
\end{equation}
Thus,
\begin{equation}
\begin{split}
\mathbb{E}[(Y(N)-\mu)^2v(N)]
&= \frac{1}{N-1}\left( N\mu_4 + N(N-1)\sigma^4 \right)
-\frac{N}{N-1}\left( \frac{\mu_4 +3(N-1)\sigma^4}{N^3} \right)
\\
&= \frac{N^2+N+1}{N^2}\mu_4 + \frac{N^3-3}{N^2}\sigma^4.
\end{split}
\end{equation}
Finally,
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)]
&= \left( N-1 \right)\mathrm{Var}[v(N)]
\\ &\quad + \frac{d}{N(N+d)}
\left( (N^2+N+1)\mu_4 + (N^3-N-3)\sigma^4 \right).
\end{aligned}
\end{equation}
Using the variance–estimator expectation:
\begin{equation}
\begin{aligned}
\left( N+d-1 \right)\mathrm{Cov}[v(N+d),v(N)]
&= \left( N-1 \right)\left( \frac{1}{N}\left( \mu_4 - \frac{N-3}{N-1}\sigma^4 \right) \right)
\\ &\quad+\frac{d}{N(N+d)}
\left( (N^2+N+1)\mu_4 + (N^3-N-3)\sigma^4 \right)
\\
&= \frac{(d+1)N + 2d -1}{N+d}\mu_4
+ \frac{dN^2 - N - 2d + 3}{N+d}\sigma^4 .
\end{aligned}
\end{equation}