0
$\begingroup$

While deriving the electric field from a dipole source, from the notes I am following I am required to process the following vector operation:
$$ \nabla \left(\frac{e^{jkr}}{r}\mathbf n\cdot \mathbf p\right) $$ The same notes suggest to use the relation $$ \nabla(f(r)\mathbf n\cdot \mathbf A) = \frac{f(r)}{r}\mathbf A + (\mathbf n \cdot \mathbf A)\mathbf n\left(\frac{\partial f(r)}{\partial r}-\frac{f(r)}{r}\right) $$ Where $r$ is the radial coordinate, $\mathbf n$ is a unitary vector in the radial direction and $\mathbf p$ is the dipole moment.
I really struggle to understand how one would go about proving the relation above. I tried solving the gradient in spherical coordinates but didn't succeed. In particular, I believed the dot product on the left side left me with only the radial component of $A$, but then on the right side there is the full vector $A$ again. So here is where confusion arises.
What I am kindly asking is any hint on how to approach this.
Thank you.

$\endgroup$

2 Answers 2

1
$\begingroup$

Vectors $\vec{r}$ and $\vec{n}$ have components $$ \vec{r} = \left(x, y, z\right),~~~~ \vec{n} = \frac{\vec{r}}{r} = \left( \frac{x}{r} , \frac{y}{r}, \frac{z}{r} \right), $$ where $r = (x^2 + y^2+z^2)^{1/2}$. Then $\partial r/\partial x = x /(x^2 + y^2+z^2)^{1/2}$ etc, so $$ \nabla r = \vec{n} $$ and $$ \nabla f = \frac{\partial f}{\partial r} \nabla r = \frac{\partial f}{\partial r} \vec{n} $$ for any function $f = f(r)$. For any constant vector $\vec{A}$ we have $$ \nabla (\vec{n} \cdot \vec{A}) = \nabla \left( \frac{x A_x + y A_y + z A_z}{r} \right) . $$ Taking into account $\nabla ({x A_x + y A_y + z A_z}) = \vec{A}$ and $\nabla(1/r) = -\nabla{r}/r^2$ we get $$ \nabla (\vec{n} \cdot \vec{A}) = \frac{\vec{A}}{r} - \frac{(\vec{n} \cdot \vec{A}) \vec{n}}{r}. $$ Therefore $$ \nabla \left(f \vec{n} \cdot \vec{A} \right) = f \nabla (\vec{n} \cdot \vec{A}) + (\vec{n} \cdot \vec{A}) \nabla f = $$ $$ f \frac{\vec{A}}{r} + {(\vec{n} \cdot \vec{A}) \vec{n}} \left( \frac{\partial f}{\partial r} - \frac{f}{r} \right). $$

$\endgroup$
0
$\begingroup$

Let $u = f (\mathbf{a}:\mathbf{n})$ where $\mathbf{n}= \mathbf{r}/r$ and the colon operator denotes the (Frobenius) inner product. For vectors, it is the usual dot product.

\begin{eqnarray*} du &=& (\mathbf{a}:\mathbf{n}) df + f(\mathbf{a}:d\mathbf{n}) \\ &=& (\mathbf{a}:\mathbf{n}) \frac{\partial f}{\partial r} dr + f(\mathbf{a}:\mathbf{J}d\mathbf{r})\\ \frac{\partial u}{\partial \mathbf{r}} &=& (\mathbf{a}:\mathbf{n}) \frac{\partial f}{\partial r} \mathbf{n} + f (\mathbf{J}^T \mathbf{a}) \end{eqnarray*} where we use $dr=\mathbf{n}:d\mathbf{r}$.

The (symmetric) Jacobian is $$ \mathbf{J} = \frac{1}{r} \mathbf{I}- \frac{1}{r^3} \mathbf{r}\mathbf{r}^T = \frac{1}{r} \left(\mathbf{I}-\mathbf{n}\mathbf{n}^T \right) $$

This gives \begin{eqnarray} \frac{\partial u}{\partial \mathbf{r}} &=& (\mathbf{a}:\mathbf{n}) \frac{\partial f}{\partial r} \mathbf{n} + \frac{f}{r} \left[ \mathbf{a}- (\mathbf{a}:\mathbf{n})\mathbf{n} \right] \\ &=& \frac{f}{r}\mathbf{a}+ (\mathbf{a}:\mathbf{n}) \left[ \frac{\partial f}{\partial r}-\frac{f}{r} \right] \mathbf{n} \end{eqnarray}

$\endgroup$
2
  • 1
    $\begingroup$ what is the meaning of the colon? $\endgroup$ Commented Sep 28 at 10:45
  • $\begingroup$ I have added it in the text. This denotes the inner product. $\endgroup$ Commented Sep 28 at 13:00

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.