2
$\begingroup$

Recently, at an olympiad I came across a problem that left me stuck.

Let $n\ge 2$ be a natural number. For which smallest $n$ do there exist natural numbers $a_1,a_2,\dots,a_n$ such that

$$ \frac{\bigl(a_1+a_2+\cdots+a_n\bigr)^2-1}{a_1^2+a_2^2+\cdots+a_n^2} $$

is an integer?

I am not very well-versed in number theory, but here are the attempts I made:

  1. The case $n=2$.

    $$ \frac{(a+b)^2-1}{a^2+b^2}=\frac{2ab-1}{a^2+b^2}+1. $$

    Since $2ab-1<a^2+b^2$, the fractional part $\dfrac{2ab-1}{a^2+b^2}$ cannot be a nonzero integer. (Also $2ab-1=0$ is impossible in natural numbers.) Hence the expression cannot be an integer for $n=2$.

  2. A general estimate using the Cauchy–Schwarz / inequality of arithmetic and quadratic means:

    $$ \bigl(a_1+\cdots+a_n\bigr)^2\le n\bigl(a_1^2+\cdots+a_n^2\bigr), $$

    so

    $$ \frac{\bigl(a_1+\cdots+a_n\bigr)^2-1}{a_1^2+\cdots+a_n^2}\le\frac{n\bigl(a_1^2+\cdots+a_n^2\bigr)-1}{a_1^2+\cdots+a_n^2}<n. $$

    Thus any integer value of the expression must be strictly less than $n$.

  3. A parity observation. Since

    $$ a_1^2+\cdots+a_n^2\equiv\bigl(a_1+\cdots+a_n\bigr)^2\pmod 2, $$

    if the sum of squares is even then $\bigl(a_1+\cdots+a_n\bigr)^2-1$ is odd; therefore $a_1^2+\cdots+a_n^2\equiv a_1+\cdots+a_n\equiv 1\pmod 2$. (I tried to use parity to restrict possible values, but didn’t reach a useful contradiction.)

  4. Trying to reduce to a Diophantine equation:

    $$ \bigl(a_1+\cdots+a_n-1\bigr)\bigl(a_1+\cdots+a_n+1\bigr)=k\cdot\bigl(a_1^2+\cdots+a_n^2\bigr), $$

    but that didn’t lead anywhere productive.

  5. The equal-values test: take $a_1=\cdots=a_n=m$. Then

    $$ \frac{(nm)^2-1}{nm^2}=n-\frac{1}{nm^2}, $$

    which is not an integer for $nm^2\ne1$.

I would be grateful for any ideas or hints. Thanks for your interest in the problem!

$\endgroup$
2

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.