Consider $X_1, X_2, \dots, X_n$ as a random sample from a distribution with the probability density function (pdf):
$$ f(x) = \begin{cases} e^{-(x - \theta)}, & \text{for } x < \theta, -\infty<\theta<\infty \\ 0, & \text{otherwise}. \end{cases}$$
If the estimator for the parameter $\theta$ is $Y_n = \min\{X_1, X_2, \dots, X_n\}$, then is the estimator $Y_n$ unbiased for $\theta$?
I know that it is unbiased if $E(Y_n)=\theta$ and I have found the $f_{Y_n}(x)=-ne^{n(\theta-x)}$. Now what I'm confuse is to find the $E(Y_n)$ what will be the lower and upper bound for the integral $\int_{-\infty}^{\infty}-nxe^{n(\theta-x)}dx$?