Suppose that $X_k(1 \leqslant k \leqslant n )$ are positive i.i.d random variable with finite mean $\mu$ and variance $\sigma^2$. Define $P_n= (\prod \limits _{k=1}^n X_k)^{\frac{1}{n}}$ $(n\geqslant1)$and $\Pi_n=\frac{P_n-\mu}{\sigma / {\sqrt{n}}}$ $(n\geqslant1)$ Find the limit of $\Pi_n$ in distribution(i.e.,$\Pi_n \rightarrow_d ?$).
There is a hint for the question: Use the Delta Method.
First I take log on both side for $P_n= (\prod \limits _{k=1}^n X_k)^{\frac{1}{n}}$ and get: $$\log(P_n)=\frac{1}{n}\sum \limits_{k=1}^n \log(X_k)$$
I honestly don't have the slightest inkling on what to do for the next steps.