67
$\begingroup$

I have been able to find several counterexample books in some math areas. For example:

$\bullet$ Counterexamples in Analysis, Bernard R. Gelbaum, John M. H. Olmsted

$\bullet$ Counterexamples in Topology, Lynn Arthur Steen, J. Arthur Seebach Jr.

$\bullet$ Counterexamples in Probability and Statistics, Joseph P. Romano, A.F. Siegel

$\bullet$ Counterexamples in Probability and Real Analysis, Gary L. Wise and Eric B. Hall

$\bullet$ Counterexamples in Probability, Jordan M. Stoyanov

Why are there no other examples of books in other math topics (number theory, numerical analysis, DEQs, PDEs, Dynamical Systems, Discrete Math...)?

Is it that it is just not a rich enough area, examples are too trivial, the book wouldn't warrant publishing (low sales), someone just hasn't written one, I missed it or something else?

Regards

$\endgroup$
2
  • 9
    $\begingroup$ Your list is not complete. $\endgroup$ Commented Jan 15, 2013 at 16:16
  • 6
    $\begingroup$ Nice question! Maybe, community wiki fits it? $\endgroup$ Commented Jan 15, 2013 at 16:16

4 Answers 4

54
$\begingroup$

The following list of titles, all of which can be found on Amazon, may help to answer the question:

  • Counterexamples in Optimal Control Theory

  • Lectures on Counterexamples in Several Complex Variables

  • Counterexamples in Topological Vector Spaces

  • Theorems and Counterexamples in Mathematics

  • Counterexamples in Calculus

  • Convex Functions: Constructions, Characterizations and Counterexamples

  • Surprises and Counterexamples in Real Function Theory

  • Examples and Counterexamples in Graph Theory

  • Counter-Examples In Differential Equations And Related Topics

$\endgroup$
1
  • 3
    $\begingroup$ @michealGreinecker these books are very much addictive. It is a different kind of fun to read them. Please add a few more $\endgroup$ Commented Oct 15, 2017 at 11:56
17
$\begingroup$

There is a new book on counterexamples in measure theory:

"Counterexamples in Measure and Integration" by René L. Schilling, Franziska Kühn. Cambridge University Press, 2021.

$\endgroup$
6
$\begingroup$

No idea if it's any good, but here's a new one:

Counterexamples in Operator Theory - Mohammed Hichem Mortad

$\endgroup$
1
  • 1
    $\begingroup$ Your answer could be improved with additional supporting information. Please edit to add further details, such as citations or documentation, so that others can confirm that your answer is correct. You can find more information on how to write good answers in the help center. $\endgroup$ Commented Jun 1, 2022 at 2:49
4
$\begingroup$

An interest on counterexamples in mathematics was recently revived on Twitter: Examples of books on counterexamples (*). With additional contributions, a list of such books is provided (with .bib file) in the unpublished notice: Examples of counterexamples: a book conspectus. The abstract reads:

A counterexample is any exception to a generalization. Counterexamples are often used in science (and philosophy), as a means to setting boundaries. In mathematics at large, well-chosen counterexamples may bound possible theorems, disprove certain conjectures. This conspectus is (mostly) meant to gather and share counterexample book references (on algebra, analysis, calculus, logic, philosophy, probability, statistics, topology). It is available at: https://doi.org/10.5281/zenodo.14740765

The current list is given in the following snapshot.Examples of counterexamples: a book conspectus

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.