I know how to prove the Euler-Lagrange equation($\frac{\partial f}{\partial y}-\frac{d }{d x} \frac{\partial f}{\partial y_x}$) to minimize the the functional \begin{align} J(y)=\int^{x_2}_{x_1} f(x,y(x),y'(x)) \ dx. \end{align}
My question is how to prove the Euler-Lagrange equation ($\frac{\partial f}{\partial y}-\frac{d }{d x} \frac{\partial f}{\partial y_x}+\frac{d^2}{dx^2} \frac{\partial f}{\partial y_{xx}}$), for the functional
\begin{align} J(y)=\int^{x_2}_{x_1} f(x,y(x),y'(x),y''(x)) \ dx. \end{align}
My Attempt Using $$y(x,\alpha)=y(x,0)+\alpha \eta(x) $$ where $\eta(x)$ is a perturbation, away from $y(x,0)$. The condition for an extrema of $J$ is $\frac{d J(\alpha)}{d \alpha}=0$. $$\frac{d J(\alpha)}{d \alpha}=\frac{d }{d \alpha} \int^{x_2}_{x_1} f(x,y(x),y'(x),y''(x)) dx= \int^{x_2}_{x_1} \frac{d }{d \alpha} f(x,y(x),y'(x),y''(x)) dx $$ We note the total derivative of $\frac{d f}{d \alpha}$ is \begin{align} \frac{d f}{d \alpha}&=\frac{\partial f}{\partial x} \frac{d x}{d \alpha}+\frac{\partial f}{\partial y} \frac{d y}{d \alpha}+\frac{\partial f}{\partial y_x} \frac{d y_x}{d \alpha}+\frac{\partial f}{\partial y_{xx}} \frac{d y_{xx}}{d \alpha} \\ &=\frac{\partial f}{\partial y} \frac{d y}{d \alpha}+\frac{\partial f}{\partial y_x} \frac{d y_x}{d \alpha}+\frac{\partial f}{\partial y_{xx}} \frac{d y_{xx}}{d \alpha} \\ &=\frac{\partial f}{\partial y} \eta(x) + \frac{\partial f}{\partial y_x} \eta'(x)+ \frac{\partial f}{\partial y_{xx}} \eta''(x) \end{align}
so \begin{align} \frac{d f}{d \alpha}&= \int^{x_2}_{x_1} \frac{\partial f}{\partial y} \eta(x) + \frac{\partial f}{\partial y_x} \eta'(x)+ \frac{\partial f}{\partial y_{xx}} \eta''(x) \ dx \end{align} we can use integration by parts and the property $\eta(x_1)=\eta(x_2)=0$ to show that the first two terms are equal to \begin{align} \int^{x_2}_{x_1}[\frac{\partial f}{\partial y}-\frac{d }{d x} \frac{\partial f}{\partial y_x}]\eta(x). \end{align}
For the last part we do integration by parts again using the fact that $\eta'(x)$ vanishes. \begin{align} \int^{x_2}_{x_1} \frac{\partial f}{\partial y_{xx}} \eta''(x) \ dx &= \frac{\partial f}{\partial y_{xx}} \eta'(x)|^{x_2}_{x_1} - \int^{x_2}_{x_1} \frac{d }{dx} \frac{\partial f}{\partial y_{xx}} \eta'(x) \ dx \\ &= 0 - \int^{x_2}_{x_1} \frac{d }{dx} \frac{\partial f}{\partial y_{xx}} \eta'(x) \\ &=-\frac{\partial f}{\partial y_{xx}} \eta(x)|^{x_2}_{x_1} + \int^{x_2}_{x_1} \frac{d^2 }{d x^2} \frac{\partial f}{\partial y_{xx}} \eta(x) \ dx \\ &=\int^{x_2}_{x_1} \frac{d^2 }{d x^2} \frac{\partial f}{\partial y_{xx}} \eta(x) \ dx \\ \end{align}
The final integral is \begin{align} \frac{d f}{d \alpha}&=\int^{x_2}_{x_1}[\frac{\partial f}{\partial y}-\frac{d }{d x} \frac{\partial f}{\partial y_x}+\frac{d^2}{dx^2} \frac{\partial f}{\partial y_{xx}}]\eta(x). \end{align}
with the Fundamental Lemma from the Calculus of Variations, this is enough to prove the answer.
Notes:
- I have seen this post but it does not answer my question.
- I use $y'(x)$ and $y_x$ interchangeably.
- My post should now include full answer.