Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
/*
 * Copyright (c) 2018 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/spinlock.h>
#include <wait_q.h>
#include <kthread.h>
#include <priority_q.h>
#include <kswap.h>
#include <ipi.h>
#include <kernel_arch_func.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <stdbool.h>
#include <kernel_internal.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/timing/timing.h>
#include <zephyr/sys/util.h>

LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);

#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_TIMESLICING)
extern struct k_thread *pending_current;
#endif

struct k_spinlock _sched_spinlock;

/* Storage to "complete" the context switch from an invalid/incomplete thread
 * context (ex: exiting an ISR that aborted _current)
 */
__incoherent struct k_thread _thread_dummy;

static ALWAYS_INLINE void update_cache(int preempt_ok);
static ALWAYS_INLINE void halt_thread(struct k_thread *thread, uint8_t new_state);
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q);


BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES,
	     "You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as "
	     "CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative "
	     "threads.");

static ALWAYS_INLINE void *thread_runq(struct k_thread *thread)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
	int cpu, m = thread->base.cpu_mask;

	/* Edge case: it's legal per the API to "make runnable" a
	 * thread with all CPUs masked off (i.e. one that isn't
	 * actually runnable!).  Sort of a wart in the API and maybe
	 * we should address this in docs/assertions instead to avoid
	 * the extra test.
	 */
	cpu = m == 0 ? 0 : u32_count_trailing_zeros(m);

	return &_kernel.cpus[cpu].ready_q.runq;
#else
	ARG_UNUSED(thread);
	return &_kernel.ready_q.runq;
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}

static ALWAYS_INLINE void *curr_cpu_runq(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
	return &arch_curr_cpu()->ready_q.runq;
#else
	return &_kernel.ready_q.runq;
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}

static ALWAYS_INLINE void runq_add(struct k_thread *thread)
{
	__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));

	_priq_run_add(thread_runq(thread), thread);
}

static ALWAYS_INLINE void runq_remove(struct k_thread *thread)
{
	__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));

	_priq_run_remove(thread_runq(thread), thread);
}

static ALWAYS_INLINE void runq_yield(void)
{
	_priq_run_yield(curr_cpu_runq());
}

static ALWAYS_INLINE struct k_thread *runq_best(void)
{
	return _priq_run_best(curr_cpu_runq());
}

/* _current is never in the run queue until context switch on
 * SMP configurations, see z_requeue_current()
 */
static inline bool should_queue_thread(struct k_thread *thread)
{
	return !IS_ENABLED(CONFIG_SMP) || (thread != _current);
}

static ALWAYS_INLINE void queue_thread(struct k_thread *thread)
{
	z_mark_thread_as_queued(thread);
	if (should_queue_thread(thread)) {
		runq_add(thread);
	}
#ifdef CONFIG_SMP
	if (thread == _current) {
		/* add current to end of queue means "yield" */
		_current_cpu->swap_ok = true;
	}
#endif /* CONFIG_SMP */
}

static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
{
	z_mark_thread_as_not_queued(thread);
	if (should_queue_thread(thread)) {
		runq_remove(thread);
	}
}

/* Called out of z_swap() when CONFIG_SMP.  The current thread can
 * never live in the run queue until we are inexorably on the context
 * switch path on SMP, otherwise there is a deadlock condition where a
 * set of CPUs pick a cycle of threads to run and wait for them all to
 * context switch forever.
 */
void z_requeue_current(struct k_thread *thread)
{
	if (z_is_thread_queued(thread)) {
		runq_add(thread);
	}
	signal_pending_ipi();
}

/* Return true if the thread is aborting, else false */
static inline bool is_aborting(struct k_thread *thread)
{
	return (thread->base.thread_state & _THREAD_ABORTING) != 0U;
}

/* Return true if the thread is aborting or suspending, else false */
static inline bool is_halting(struct k_thread *thread)
{
	return (thread->base.thread_state &
		(_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U;
}

/* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */
static inline void clear_halting(struct k_thread *thread)
{
	if (IS_ENABLED(CONFIG_SMP) && (CONFIG_MP_MAX_NUM_CPUS > 1)) {
		barrier_dmem_fence_full(); /* Other cpus spin on this locklessly! */
		thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING);
	}
}

static ALWAYS_INLINE struct k_thread *next_up(void)
{
#ifdef CONFIG_SMP
	if (is_halting(_current)) {
		halt_thread(_current, is_aborting(_current) ?
				      _THREAD_DEAD : _THREAD_SUSPENDED);
	}
#endif /* CONFIG_SMP */

	struct k_thread *thread = runq_best();

#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) &&                                                         \
	(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
	/* MetaIRQs must always attempt to return back to a
	 * cooperative thread they preempted and not whatever happens
	 * to be highest priority now. The cooperative thread was
	 * promised it wouldn't be preempted (by non-metairq threads)!
	 */
	struct k_thread *mirqp = _current_cpu->metairq_preempted;

	if (mirqp != NULL && (thread == NULL || !thread_is_metairq(thread))) {
		if (!z_is_thread_prevented_from_running(mirqp)) {
			thread = mirqp;
		} else {
			_current_cpu->metairq_preempted = NULL;
		}
	}
#endif
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
 * CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
 */

#ifndef CONFIG_SMP
	/* In uniprocessor mode, we can leave the current thread in
	 * the queue (actually we have to, otherwise the assembly
	 * context switch code for all architectures would be
	 * responsible for putting it back in z_swap and ISR return!),
	 * which makes this choice simple.
	 */
	return (thread != NULL) ? thread : _current_cpu->idle_thread;
#else
	/* Under SMP, the "cache" mechanism for selecting the next
	 * thread doesn't work, so we have more work to do to test
	 * _current against the best choice from the queue.  Here, the
	 * thread selected above represents "the best thread that is
	 * not current".
	 *
	 * Subtle note on "queued": in SMP mode, _current does not
	 * live in the queue, so this isn't exactly the same thing as
	 * "ready", it means "is _current already added back to the
	 * queue such that we don't want to re-add it".
	 */
	bool queued = z_is_thread_queued(_current);
	bool active = !z_is_thread_prevented_from_running(_current);

	if (thread == NULL) {
		thread = _current_cpu->idle_thread;
	}

	if (active) {
		int32_t cmp = z_sched_prio_cmp(_current, thread);

		/* Ties only switch if state says we yielded */
		if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) {
			thread = _current;
		}

		if (!should_preempt(thread, _current_cpu->swap_ok)) {
			thread = _current;
		}
	}

	/* Put _current back into the queue */
	if ((thread != _current) && active &&
		!z_is_idle_thread_object(_current) && !queued) {
		queue_thread(_current);
	}

	/* Take the new _current out of the queue */
	if (z_is_thread_queued(thread)) {
		dequeue_thread(thread);
	}

	_current_cpu->swap_ok = false;
	return thread;
#endif /* CONFIG_SMP */
}

void move_thread_to_end_of_prio_q(struct k_thread *thread)
{
	if (z_is_thread_queued(thread)) {
		dequeue_thread(thread);
	}
	queue_thread(thread);
	update_cache(thread == _current);
}

/* Track cooperative threads preempted by metairqs so we can return to
 * them specifically.  Called at the moment a new thread has been
 * selected to run.
 */
static void update_metairq_preempt(struct k_thread *thread)
{
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) &&                                                         \
	(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
	if (thread_is_metairq(thread) && !thread_is_metairq(_current) &&
	    !thread_is_preemptible(_current)) {
		/* Record new preemption */
		_current_cpu->metairq_preempted = _current;
	} else if (!thread_is_metairq(thread)) {
		/* Returning from existing preemption */
		_current_cpu->metairq_preempted = NULL;
	}
#else
	ARG_UNUSED(thread);
#endif
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
 * CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
 */
}

static ALWAYS_INLINE void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
	struct k_thread *thread = next_up();

	if (should_preempt(thread, preempt_ok)) {
#ifdef CONFIG_TIMESLICING
		if (thread != _current) {
			z_reset_time_slice(thread);
		}
#endif /* CONFIG_TIMESLICING */
		update_metairq_preempt(thread);
		_kernel.ready_q.cache = thread;
	} else {
		_kernel.ready_q.cache = _current;
	}

#else
	/* The way this works is that the CPU record keeps its
	 * "cooperative swapping is OK" flag until the next reschedule
	 * call or context switch.  It doesn't need to be tracked per
	 * thread because if the thread gets preempted for whatever
	 * reason the scheduler will make the same decision anyway.
	 */
	_current_cpu->swap_ok = preempt_ok;
#endif /* CONFIG_SMP */
}

static struct _cpu *thread_active_elsewhere(struct k_thread *thread)
{
	/* Returns pointer to _cpu if the thread is currently running on
	 * another CPU. There are more scalable designs to answer this
	 * question in constant time, but this is fine for now.
	 */
#ifdef CONFIG_SMP
	int currcpu = _current_cpu->id;

	unsigned int num_cpus = arch_num_cpus();

	for (int i = 0; i < num_cpus; i++) {
		if ((i != currcpu) &&
		    (_kernel.cpus[i].current == thread)) {
			return &_kernel.cpus[i];
		}
	}
#endif /* CONFIG_SMP */
	ARG_UNUSED(thread);
	return NULL;
}

static void ready_thread(struct k_thread *thread)
{
#ifdef CONFIG_KERNEL_COHERENCE
	__ASSERT_NO_MSG(arch_mem_coherent(thread));
#endif /* CONFIG_KERNEL_COHERENCE */

	/* If thread is queued already, do not try and added it to the
	 * run queue again
	 */
	if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) {
		SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread);

		queue_thread(thread);
		update_cache(0);

		flag_ipi(ipi_mask_create(thread));
	}
}

void z_ready_thread(struct k_thread *thread)
{
	K_SPINLOCK(&_sched_spinlock) {
		if (thread_active_elsewhere(thread) == NULL) {
			ready_thread(thread);
		}
	}
}

void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
{
	K_SPINLOCK(&_sched_spinlock) {
		move_thread_to_end_of_prio_q(thread);
	}
}

/* Spins in ISR context, waiting for a thread known to be running on
 * another CPU to catch the IPI we sent and halt.  Note that we check
 * for ourselves being asynchronously halted first to prevent simple
 * deadlocks (but not complex ones involving cycles of 3+ threads!).
 * Acts to release the provided lock before returning.
 */
static void thread_halt_spin(struct k_thread *thread, k_spinlock_key_t key)
{
	if (is_halting(_current)) {
		halt_thread(_current,
			    is_aborting(_current) ? _THREAD_DEAD : _THREAD_SUSPENDED);
	}
	k_spin_unlock(&_sched_spinlock, key);
	while (is_halting(thread)) {
		unsigned int k = arch_irq_lock();

		arch_spin_relax(); /* Requires interrupts be masked */
		arch_irq_unlock(k);
	}
}

/* Shared handler for k_thread_{suspend,abort}().  Called with the
 * scheduler lock held and the key passed (which it may
 * release/reacquire!) which will be released before a possible return
 * (aborting _current will not return, obviously), which may be after
 * a context switch.
 */
static ALWAYS_INLINE void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key,
					bool terminate)
{
	_wait_q_t *wq = &thread->join_queue;
#ifdef CONFIG_SMP
	wq = terminate ? wq : &thread->halt_queue;
#endif

	/* If the target is a thread running on another CPU, flag and
	 * poke (note that we might spin to wait, so a true
	 * synchronous IPI is needed here, not deferred!), it will
	 * halt itself in the IPI.  Otherwise it's unscheduled, so we
	 * can clean it up directly.
	 */

	struct _cpu *cpu = thread_active_elsewhere(thread);

	if (cpu != NULL) {
		thread->base.thread_state |= (terminate ? _THREAD_ABORTING
					      : _THREAD_SUSPENDING);
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
#ifdef CONFIG_ARCH_HAS_DIRECTED_IPIS
		arch_sched_directed_ipi(IPI_CPU_MASK(cpu->id));
#else
		arch_sched_broadcast_ipi();
#endif
#endif
		if (arch_is_in_isr()) {
			thread_halt_spin(thread, key);
		} else  {
			add_to_waitq_locked(_current, wq);
			z_swap(&_sched_spinlock, key);
		}
	} else {
		halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED);
		if ((thread == _current) && !arch_is_in_isr()) {
			if (z_is_thread_essential(thread)) {
				k_spin_unlock(&_sched_spinlock, key);
				k_panic();
				key = k_spin_lock(&_sched_spinlock);
			}
			z_swap(&_sched_spinlock, key);
			__ASSERT(!terminate, "aborted _current back from dead");
		} else {
			k_spin_unlock(&_sched_spinlock, key);
		}
	}
	/* NOTE: the scheduler lock has been released.  Don't put
	 * logic here, it's likely to be racy/deadlocky even if you
	 * re-take the lock!
	 */
}


void z_impl_k_thread_suspend(k_tid_t thread)
{
	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread);

	/* Special case "suspend the current thread" as it doesn't
	 * need the async complexity below.
	 */
	if (!IS_ENABLED(CONFIG_SMP) && (thread == _current) && !arch_is_in_isr()) {
		k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);

		z_mark_thread_as_suspended(thread);
		dequeue_thread(thread);
		update_cache(1);
		z_swap(&_sched_spinlock, key);
		return;
	}

	k_spinlock_key_t  key = k_spin_lock(&_sched_spinlock);

	if (unlikely(z_is_thread_suspended(thread))) {

		/* The target thread is already suspended. Nothing to do. */

		k_spin_unlock(&_sched_spinlock, key);
		return;
	}

	z_thread_halt(thread, key, false);

	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_suspend(k_tid_t thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	z_impl_k_thread_suspend(thread);
}
#include <zephyr/syscalls/k_thread_suspend_mrsh.c>
#endif /* CONFIG_USERSPACE */

void z_impl_k_thread_resume(k_tid_t thread)
{
	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread);

	k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);

	/* Do not try to resume a thread that was not suspended */
	if (unlikely(!z_is_thread_suspended(thread))) {
		k_spin_unlock(&_sched_spinlock, key);
		return;
	}

	z_mark_thread_as_not_suspended(thread);
	ready_thread(thread);

	z_reschedule(&_sched_spinlock, key);

	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_resume(k_tid_t thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	z_impl_k_thread_resume(thread);
}
#include <zephyr/syscalls/k_thread_resume_mrsh.c>
#endif /* CONFIG_USERSPACE */

static void unready_thread(struct k_thread *thread)
{
	if (z_is_thread_queued(thread)) {
		dequeue_thread(thread);
	}
	update_cache(thread == _current);
}

/* _sched_spinlock must be held */
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q)
{
	unready_thread(thread);
	z_mark_thread_as_pending(thread);

	SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread);

	if (wait_q != NULL) {
		thread->base.pended_on = wait_q;
		_priq_wait_add(&wait_q->waitq, thread);
	}
}

static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout)
{
	if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
		z_add_thread_timeout(thread, timeout);
	}
}

static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q,
			k_timeout_t timeout)
{
#ifdef CONFIG_KERNEL_COHERENCE
	__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q));
#endif /* CONFIG_KERNEL_COHERENCE */
	add_to_waitq_locked(thread, wait_q);
	add_thread_timeout(thread, timeout);
}

void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
		   k_timeout_t timeout)
{
	__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
	K_SPINLOCK(&_sched_spinlock) {
		pend_locked(thread, wait_q, timeout);
	}
}

void z_unpend_thread_no_timeout(struct k_thread *thread)
{
	K_SPINLOCK(&_sched_spinlock) {
		if (thread->base.pended_on != NULL) {
			unpend_thread_no_timeout(thread);
		}
	}
}

void z_sched_wake_thread(struct k_thread *thread, bool is_timeout)
{
	K_SPINLOCK(&_sched_spinlock) {
		bool killed = (thread->base.thread_state &
				(_THREAD_DEAD | _THREAD_ABORTING));

#ifdef CONFIG_EVENTS
		bool do_nothing = thread->no_wake_on_timeout && is_timeout;

		thread->no_wake_on_timeout = false;

		if (do_nothing) {
			continue;
		}
#endif /* CONFIG_EVENTS */

		if (!killed) {
			/* The thread is not being killed */
			if (thread->base.pended_on != NULL) {
				unpend_thread_no_timeout(thread);
			}
			z_mark_thread_as_not_sleeping(thread);
			ready_thread(thread);
		}
	}

}

#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for *_thread_timeout() APIs */
void z_thread_timeout(struct _timeout *timeout)
{
	struct k_thread *thread = CONTAINER_OF(timeout,
					       struct k_thread, base.timeout);

	z_sched_wake_thread(thread, true);
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */

int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
	       _wait_q_t *wait_q, k_timeout_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
	pending_current = _current;
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
	__ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock);

	/* We do a "lock swap" prior to calling z_swap(), such that
	 * the caller's lock gets released as desired.  But we ensure
	 * that we hold the scheduler lock and leave local interrupts
	 * masked until we reach the context switch.  z_swap() itself
	 * has similar code; the duplication is because it's a legacy
	 * API that doesn't expect to be called with scheduler lock
	 * held.
	 */
	(void) k_spin_lock(&_sched_spinlock);
	pend_locked(_current, wait_q, timeout);
	k_spin_release(lock);
	return z_swap(&_sched_spinlock, key);
}

struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q)
{
	struct k_thread *thread = NULL;

	K_SPINLOCK(&_sched_spinlock) {
		thread = _priq_wait_best(&wait_q->waitq);

		if (thread != NULL) {
			unpend_thread_no_timeout(thread);
		}
	}

	return thread;
}

void z_unpend_thread(struct k_thread *thread)
{
	z_unpend_thread_no_timeout(thread);
	z_abort_thread_timeout(thread);
}

/* Priority set utility that does no rescheduling, it just changes the
 * run queue state, returning true if a reschedule is needed later.
 */
bool z_thread_prio_set(struct k_thread *thread, int prio)
{
	bool need_sched = 0;
	int old_prio = thread->base.prio;

	K_SPINLOCK(&_sched_spinlock) {
		need_sched = z_is_thread_ready(thread);

		if (need_sched) {
			if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
				dequeue_thread(thread);
				thread->base.prio = prio;
				queue_thread(thread);

				if (old_prio > prio) {
					flag_ipi(ipi_mask_create(thread));
				}
			} else {
				/*
				 * This is a running thread on SMP. Update its
				 * priority, but do not requeue it. An IPI is
				 * needed if the priority is both being lowered
				 * and it is running on another CPU.
				 */

				thread->base.prio = prio;

				struct _cpu *cpu;

				cpu = thread_active_elsewhere(thread);
				if ((cpu != NULL) && (old_prio < prio)) {
					flag_ipi(IPI_CPU_MASK(cpu->id));
				}
			}

			update_cache(1);
		} else if (z_is_thread_pending(thread)) {
			/* Thread is pending, remove it from the waitq
			 * and reinsert it with the new priority to avoid
			 * violating waitq ordering and rb assumptions.
			 */
			_wait_q_t *wait_q = pended_on_thread(thread);

			_priq_wait_remove(&wait_q->waitq, thread);
			thread->base.prio = prio;
			_priq_wait_add(&wait_q->waitq, thread);
		} else {
			thread->base.prio = prio;
		}
	}

	SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio);

	return need_sched;
}

static inline bool resched(uint32_t key)
{
#ifdef CONFIG_SMP
	_current_cpu->swap_ok = 0;
#endif /* CONFIG_SMP */

	return arch_irq_unlocked(key) && !arch_is_in_isr();
}

/*
 * Check if the next ready thread is the same as the current thread
 * and save the trip if true.
 */
static inline bool need_swap(void)
{
	/* the SMP case will be handled in C based z_swap() */
#ifdef CONFIG_SMP
	return true;
#else
	struct k_thread *new_thread;

	/* Check if the next ready thread is the same as the current thread */
	new_thread = _kernel.ready_q.cache;
	return new_thread != _current;
#endif /* CONFIG_SMP */
}

void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
{
	if (resched(key.key) && need_swap()) {
		z_swap(lock, key);
	} else {
		k_spin_unlock(lock, key);
		signal_pending_ipi();
	}
}

void z_reschedule_irqlock(uint32_t key)
{
	if (resched(key) && need_swap()) {
		z_swap_irqlock(key);
	} else {
		irq_unlock(key);
		signal_pending_ipi();
	}
}

void k_sched_lock(void)
{
	K_SPINLOCK(&_sched_spinlock) {
		SYS_PORT_TRACING_FUNC(k_thread, sched_lock);

		z_sched_lock();
	}
}

void k_sched_unlock(void)
{
	K_SPINLOCK(&_sched_spinlock) {
		__ASSERT(_current->base.sched_locked != 0U, "");
		__ASSERT(!arch_is_in_isr(), "");

		++_current->base.sched_locked;
		update_cache(0);
	}

	LOG_DBG("scheduler unlocked (%p:%d)",
		_current, _current->base.sched_locked);

	SYS_PORT_TRACING_FUNC(k_thread, sched_unlock);

	z_reschedule_unlocked();
}

struct k_thread *z_swap_next_thread(void)
{
#ifdef CONFIG_SMP
	struct k_thread *ret = next_up();

	if (ret == _current) {
		/* When not swapping, have to signal IPIs here.  In
		 * the context switch case it must happen later, after
		 * _current gets requeued.
		 */
		signal_pending_ipi();
	}
	return ret;
#else
	return _kernel.ready_q.cache;
#endif /* CONFIG_SMP */
}

#ifdef CONFIG_USE_SWITCH
/* Just a wrapper around z_current_thread_set(xxx) with tracing */
static inline void set_current(struct k_thread *new_thread)
{
	z_thread_mark_switched_out();
	z_current_thread_set(new_thread);
}

/**
 * @brief Determine next thread to execute upon completion of an interrupt
 *
 * Thread preemption is performed by context switching after the completion
 * of a non-recursed interrupt. This function determines which thread to
 * switch to if any. This function accepts as @p interrupted either:
 *
 * - The handle for the interrupted thread in which case the thread's context
 *   must already be fully saved and ready to be picked up by a different CPU.
 *
 * - NULL if more work is required to fully save the thread's state after
 *   it is known that a new thread is to be scheduled. It is up to the caller
 *   to store the handle resulting from the thread that is being switched out
 *   in that thread's "switch_handle" field after its
 *   context has fully been saved, following the same requirements as with
 *   the @ref arch_switch() function.
 *
 * If a new thread needs to be scheduled then its handle is returned.
 * Otherwise the same value provided as @p interrupted is returned back.
 * Those handles are the same opaque types used by the @ref arch_switch()
 * function.
 *
 * @warning
 * The _current value may have changed after this call and not refer
 * to the interrupted thread anymore. It might be necessary to make a local
 * copy before calling this function.
 *
 * @param interrupted Handle for the thread that was interrupted or NULL.
 * @retval Handle for the next thread to execute, or @p interrupted when
 *         no new thread is to be scheduled.
 */
void *z_get_next_switch_handle(void *interrupted)
{
	z_check_stack_sentinel();

#ifdef CONFIG_SMP
	void *ret = NULL;

	K_SPINLOCK(&_sched_spinlock) {
		struct k_thread *old_thread = _current, *new_thread;

		if (IS_ENABLED(CONFIG_SMP)) {
			old_thread->switch_handle = NULL;
		}
		new_thread = next_up();

		z_sched_usage_switch(new_thread);

		if (old_thread != new_thread) {
			uint8_t  cpu_id;

			update_metairq_preempt(new_thread);
			z_sched_switch_spin(new_thread);
			arch_cohere_stacks(old_thread, interrupted, new_thread);

			_current_cpu->swap_ok = 0;
			cpu_id = arch_curr_cpu()->id;
			new_thread->base.cpu = cpu_id;
			set_current(new_thread);

#ifdef CONFIG_TIMESLICING
			z_reset_time_slice(new_thread);
#endif /* CONFIG_TIMESLICING */

#ifdef CONFIG_SPIN_VALIDATE
			/* Changed _current!  Update the spinlock
			 * bookkeeping so the validation doesn't get
			 * confused when the "wrong" thread tries to
			 * release the lock.
			 */
			z_spin_lock_set_owner(&_sched_spinlock);
#endif /* CONFIG_SPIN_VALIDATE */

			/* A queued (runnable) old/current thread
			 * needs to be added back to the run queue
			 * here, and atomically with its switch handle
			 * being set below.  This is safe now, as we
			 * will not return into it.
			 */
			if (z_is_thread_queued(old_thread)) {
#ifdef CONFIG_SCHED_IPI_CASCADE
				if ((new_thread->base.cpu_mask != -1) &&
				    (old_thread->base.cpu_mask != BIT(cpu_id))) {
					flag_ipi(ipi_mask_create(old_thread));
				}
#endif
				runq_add(old_thread);
			}
		}
		old_thread->switch_handle = interrupted;
		ret = new_thread->switch_handle;
		if (IS_ENABLED(CONFIG_SMP)) {
			/* Active threads MUST have a null here */
			new_thread->switch_handle = NULL;
		}
	}
	signal_pending_ipi();
	return ret;
#else
	z_sched_usage_switch(_kernel.ready_q.cache);
	_current->switch_handle = interrupted;
	set_current(_kernel.ready_q.cache);
	return _current->switch_handle;
#endif /* CONFIG_SMP */
}
#endif /* CONFIG_USE_SWITCH */

int z_unpend_all(_wait_q_t *wait_q)
{
	int need_sched = 0;
	struct k_thread *thread;

	for (thread = z_waitq_head(wait_q); thread != NULL; thread = z_waitq_head(wait_q)) {
		z_unpend_thread(thread);
		z_ready_thread(thread);
		need_sched = 1;
	}

	return need_sched;
}

void init_ready_q(struct _ready_q *ready_q)
{
	_priq_run_init(&ready_q->runq);
}

void z_sched_init(void)
{
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
	for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
		init_ready_q(&_kernel.cpus[i].ready_q);
	}
#else
	init_ready_q(&_kernel.ready_q);
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
}

void z_impl_k_thread_priority_set(k_tid_t thread, int prio)
{
	/*
	 * Use NULL, since we cannot know what the entry point is (we do not
	 * keep track of it) and idle cannot change its priority.
	 */
	Z_ASSERT_VALID_PRIO(prio, NULL);

	bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio);

	if ((need_sched) && (IS_ENABLED(CONFIG_SMP) ||
			     (_current->base.sched_locked == 0U))) {
		z_reschedule_unlocked();
	}
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
				    "invalid thread priority %d", prio));
#ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY
	K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio,
				    "thread priority may only be downgraded (%d < %d)",
				    prio, thread->base.prio));
#endif /* CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY */
	z_impl_k_thread_priority_set(thread, prio);
}
#include <zephyr/syscalls/k_thread_priority_set_mrsh.c>
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_SCHED_DEADLINE
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{

	deadline = CLAMP(deadline, 0, INT_MAX);

	struct k_thread *thread = tid;
	int32_t newdl = k_cycle_get_32() + deadline;

	/* The prio_deadline field changes the sorting order, so can't
	 * change it while the thread is in the run queue (dlists
	 * actually are benign as long as we requeue it before we
	 * release the lock, but an rbtree will blow up if we break
	 * sorting!)
	 */
	K_SPINLOCK(&_sched_spinlock) {
		if (z_is_thread_queued(thread)) {
			dequeue_thread(thread);
			thread->base.prio_deadline = newdl;
			queue_thread(thread);
		} else {
			thread->base.prio_deadline = newdl;
		}
	}
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
{
	struct k_thread *thread = tid;

	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0,
				    "invalid thread deadline %d",
				    (int)deadline));

	z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
}
#include <zephyr/syscalls/k_thread_deadline_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_SCHED_DEADLINE */

void z_impl_k_reschedule(void)
{
	k_spinlock_key_t key;

	key = k_spin_lock(&_sched_spinlock);

	update_cache(0);

	z_reschedule(&_sched_spinlock, key);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_reschedule(void)
{
	z_impl_k_reschedule();
}
#include <zephyr/syscalls/k_reschedule_mrsh.c>
#endif /* CONFIG_USERSPACE */

bool k_can_yield(void)
{
	return !(k_is_pre_kernel() || k_is_in_isr() ||
		 z_is_idle_thread_object(_current));
}

void z_impl_k_yield(void)
{
	__ASSERT(!arch_is_in_isr(), "");

	SYS_PORT_TRACING_FUNC(k_thread, yield);

	k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);

	runq_yield();

	update_cache(1);
	z_swap(&_sched_spinlock, key);
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_yield(void)
{
	z_impl_k_yield();
}
#include <zephyr/syscalls/k_yield_mrsh.c>
#endif /* CONFIG_USERSPACE */

static int32_t z_tick_sleep(k_timeout_t timeout)
{
	uint32_t expected_wakeup_ticks;

	__ASSERT(!arch_is_in_isr(), "");

	LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)timeout.ticks);

	/* K_NO_WAIT is treated as a 'yield' */
	if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
		k_yield();
		return 0;
	}

	k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);

#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
	pending_current = _current;
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
	unready_thread(_current);
	expected_wakeup_ticks = (uint32_t)z_add_thread_timeout(_current, timeout);
	z_mark_thread_as_sleeping(_current);

	(void)z_swap(&_sched_spinlock, key);

	if (!z_is_aborted_thread_timeout(_current)) {
		return 0;
	}

	/* We require a 32 bit unsigned subtraction to care a wraparound */
	uint32_t left_ticks = expected_wakeup_ticks - sys_clock_tick_get_32();

	/* To handle a negative value correctly, once type-cast it to signed 32 bit */
	k_ticks_t ticks = (k_ticks_t)(int32_t)left_ticks;

	if (ticks > 0) {
		return ticks;
	}

	return 0;
}

int32_t z_impl_k_sleep(k_timeout_t timeout)
{
	k_ticks_t ticks;

	__ASSERT(!arch_is_in_isr(), "");

	SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout);

	ticks = z_tick_sleep(timeout);

	/* k_sleep() still returns 32 bit milliseconds for compatibility */
	int64_t ms = K_TIMEOUT_EQ(timeout, K_FOREVER) ? K_TICKS_FOREVER :
		CLAMP(k_ticks_to_ms_ceil64(ticks), 0, INT_MAX);

	SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ms);
	return (int32_t) ms;
}

#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout)
{
	return z_impl_k_sleep(timeout);
}
#include <zephyr/syscalls/k_sleep_mrsh.c>
#endif /* CONFIG_USERSPACE */

int32_t z_impl_k_usleep(int32_t us)
{
	int32_t ticks;

	SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us);

	ticks = k_us_to_ticks_ceil64(us);
	ticks = z_tick_sleep(Z_TIMEOUT_TICKS(ticks));

	int32_t ret = k_ticks_to_us_ceil64(ticks);

	SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret);

	return ret;
}

#ifdef CONFIG_USERSPACE
static inline int32_t z_vrfy_k_usleep(int32_t us)
{
	return z_impl_k_usleep(us);
}
#include <zephyr/syscalls/k_usleep_mrsh.c>
#endif /* CONFIG_USERSPACE */

void z_impl_k_wakeup(k_tid_t thread)
{
	SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread);

	k_spinlock_key_t  key = k_spin_lock(&_sched_spinlock);

	if (z_is_thread_sleeping(thread)) {
		z_abort_thread_timeout(thread);
		z_mark_thread_as_not_sleeping(thread);
		ready_thread(thread);
		z_reschedule(&_sched_spinlock, key);
	} else {
		k_spin_unlock(&_sched_spinlock, key);
	}
}

#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_wakeup(k_tid_t thread)
{
	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
	z_impl_k_wakeup(thread);
}
#include <zephyr/syscalls/k_wakeup_mrsh.c>
#endif /* CONFIG_USERSPACE */

k_tid_t z_impl_k_sched_current_thread_query(void)
{
	return _current;
}

#ifdef CONFIG_USERSPACE
static inline k_tid_t z_vrfy_k_sched_current_thread_query(void)
{
	return z_impl_k_sched_current_thread_query();
}
#include <zephyr/syscalls/k_sched_current_thread_query_mrsh.c>
#endif /* CONFIG_USERSPACE */

static inline void unpend_all(_wait_q_t *wait_q)
{
	struct k_thread *thread;

	for (thread = z_waitq_head(wait_q); thread != NULL; thread = z_waitq_head(wait_q)) {
		unpend_thread_no_timeout(thread);
		z_abort_thread_timeout(thread);
		arch_thread_return_value_set(thread, 0);
		ready_thread(thread);
	}
}

#ifdef CONFIG_THREAD_ABORT_HOOK
extern void thread_abort_hook(struct k_thread *thread);
#endif /* CONFIG_THREAD_ABORT_HOOK */

/**
 * @brief Dequeues the specified thread
 *
 * Dequeues the specified thread and move it into the specified new state.
 *
 * @param thread Identify the thread to halt
 * @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED)
 */
static ALWAYS_INLINE void halt_thread(struct k_thread *thread, uint8_t new_state)
{
	bool dummify = false;

	/* We hold the lock, and the thread is known not to be running
	 * anywhere.
	 */
	if ((thread->base.thread_state & new_state) == 0U) {
		thread->base.thread_state |= new_state;
		if (z_is_thread_queued(thread)) {
			dequeue_thread(thread);
		}

		if (new_state == _THREAD_DEAD) {
			if (thread->base.pended_on != NULL) {
				unpend_thread_no_timeout(thread);
			}
			z_abort_thread_timeout(thread);
			unpend_all(&thread->join_queue);

			/* Edge case: aborting _current from within an
			 * ISR that preempted it requires clearing the
			 * _current pointer so the upcoming context
			 * switch doesn't clobber the now-freed
			 * memory
			 */
			if (thread == _current && arch_is_in_isr()) {
				dummify = true;
			}
		}
#ifdef CONFIG_SMP
		unpend_all(&thread->halt_queue);
#endif /* CONFIG_SMP */
		update_cache(1);

		if (new_state == _THREAD_SUSPENDED) {
			clear_halting(thread);
			return;
		}

#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
		arch_float_disable(thread);
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */

		SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread);

		z_thread_monitor_exit(thread);
#ifdef CONFIG_THREAD_ABORT_HOOK
		thread_abort_hook(thread);
#endif /* CONFIG_THREAD_ABORT_HOOK */

#ifdef CONFIG_OBJ_CORE_THREAD
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
		k_obj_core_stats_deregister(K_OBJ_CORE(thread));
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
		k_obj_core_unlink(K_OBJ_CORE(thread));
#endif /* CONFIG_OBJ_CORE_THREAD */

#ifdef CONFIG_USERSPACE
		z_mem_domain_exit_thread(thread);
		k_thread_perms_all_clear(thread);
		k_object_uninit(thread->stack_obj);
		k_object_uninit(thread);
#endif /* CONFIG_USERSPACE */

#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
		k_thread_abort_cleanup(thread);
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */

		/* Do this "set _current to dummy" step last so that
		 * subsystems above can rely on _current being
		 * unchanged.  Disabled for posix as that arch
		 * continues to use the _current pointer in its swap
		 * code.  Note that we must leave a non-null switch
		 * handle for any threads spinning in join() (this can
		 * never be used, as our thread is flagged dead, but
		 * it must not be NULL otherwise join can deadlock).
		 */
		if (dummify && !IS_ENABLED(CONFIG_ARCH_POSIX)) {
#ifdef CONFIG_USE_SWITCH
			_current->switch_handle = _current;
#endif
			z_dummy_thread_init(&_thread_dummy);

		}

		/* Finally update the halting thread state, on which
		 * other CPUs might be spinning (see
		 * thread_halt_spin()).
		 */
		clear_halting(thread);
	}
}

void z_thread_abort(struct k_thread *thread)
{
	bool essential = z_is_thread_essential(thread);
	k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);

	if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
		k_spin_unlock(&_sched_spinlock, key);
		return;
	}

	z_thread_halt(thread, key, true);

	if (essential) {
		__ASSERT(!essential, "aborted essential thread %p", thread);
		k_panic();
	}
}

#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT)
void z_impl_k_thread_abort(k_tid_t thread)
{
	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread);

	z_thread_abort(thread);

	__ASSERT_NO_MSG((thread->base.thread_state & _THREAD_DEAD) != 0);

	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread);
}
#endif /* !CONFIG_ARCH_HAS_THREAD_ABORT */

int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout)
{
	k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
	int ret;

	SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout);

	if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
		z_sched_switch_spin(thread);
		ret = 0;
	} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
		ret = -EBUSY;
	} else if ((thread == _current) ||
		   (thread->base.pended_on == &_current->join_queue)) {
		ret = -EDEADLK;
	} else {
		__ASSERT(!arch_is_in_isr(), "cannot join in ISR");
		add_to_waitq_locked(_current, &thread->join_queue);
		add_thread_timeout(_current, timeout);

		SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout);
		ret = z_swap(&_sched_spinlock, key);
		SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);

		return ret;
	}

	SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);

	k_spin_unlock(&_sched_spinlock, key);
	return ret;
}

#ifdef CONFIG_USERSPACE
/* Special case: don't oops if the thread is uninitialized.  This is because
 * the initialization bit does double-duty for thread objects; if false, means
 * the thread object is truly uninitialized, or the thread ran and exited for
 * some reason.
 *
 * Return true in this case indicating we should just do nothing and return
 * success to the caller.
 */
static bool thread_obj_validate(struct k_thread *thread)
{
	struct k_object *ko = k_object_find(thread);
	int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE);

	switch (ret) {
	case 0:
		return false;
	case -EINVAL:
		return true;
	default:
#ifdef CONFIG_LOG
		k_object_dump_error(ret, thread, ko, K_OBJ_THREAD);
#endif /* CONFIG_LOG */
		K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied"));
	}
	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}

static inline int z_vrfy_k_thread_join(struct k_thread *thread,
				       k_timeout_t timeout)
{
	if (thread_obj_validate(thread)) {
		return 0;
	}

	return z_impl_k_thread_join(thread, timeout);
}
#include <zephyr/syscalls/k_thread_join_mrsh.c>

static inline void z_vrfy_k_thread_abort(k_tid_t thread)
{
	if (thread_obj_validate(thread)) {
		return;
	}

	K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread),
				    "aborting essential thread %p", thread));

	z_impl_k_thread_abort((struct k_thread *)thread);
}
#include <zephyr/syscalls/k_thread_abort_mrsh.c>
#endif /* CONFIG_USERSPACE */

/*
 * future scheduler.h API implementations
 */
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data)
{
	struct k_thread *thread;
	bool ret = false;

	K_SPINLOCK(&_sched_spinlock) {
		thread = _priq_wait_best(&wait_q->waitq);

		if (thread != NULL) {
			z_thread_return_value_set_with_data(thread,
							    swap_retval,
							    swap_data);
			unpend_thread_no_timeout(thread);
			z_abort_thread_timeout(thread);
			ready_thread(thread);
			ret = true;
		}
	}

	return ret;
}

int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
		 _wait_q_t *wait_q, k_timeout_t timeout, void **data)
{
	int ret = z_pend_curr(lock, key, wait_q, timeout);

	if (data != NULL) {
		*data = _current->base.swap_data;
	}
	return ret;
}

int z_sched_waitq_walk(_wait_q_t  *wait_q,
		       int (*func)(struct k_thread *, void *), void *data)
{
	struct k_thread *thread;
	int  status = 0;

	K_SPINLOCK(&_sched_spinlock) {
		_WAIT_Q_FOR_EACH(wait_q, thread) {

			/*
			 * Invoke the callback function on each waiting thread
			 * for as long as there are both waiting threads AND
			 * it returns 0.
			 */

			status = func(thread, data);
			if (status != 0) {
				break;
			}
		}
	}

	return status;
}

/* This routine exists for benchmarking purposes. It is not used in
 * general production code.
 */
void z_unready_thread(struct k_thread *thread)
{
	K_SPINLOCK(&_sched_spinlock) {
		unready_thread(thread);
	}
}