Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | /* * Copyright (c) 1997-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/kernel.h> #include <zephyr/init.h> #include <zephyr/internal/syscall_handler.h> #include <stdbool.h> #include <zephyr/spinlock.h> #include <ksched.h> #include <wait_q.h> static struct k_spinlock lock; #ifdef CONFIG_OBJ_CORE_TIMER static struct k_obj_type obj_type_timer; #endif /* CONFIG_OBJ_CORE_TIMER */ /** * @brief Handle expiration of a kernel timer object. * * @param t Timeout used by the timer. */ void z_timer_expiration_handler(struct _timeout *t) { struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout); struct k_thread *thread; k_spinlock_key_t key = k_spin_lock(&lock); /* In sys_clock_announce(), when a timeout expires, it is first removed * from the timeout list, then its expiration handler is called (with * unlocked interrupts). For kernel timers, the expiration handler is * this function. Usually, the timeout structure related to the timer * that is handled here will not be linked to the timeout list at this * point. But it may happen that before this function is executed and * interrupts are locked again, a given timer gets restarted from an * interrupt context that has a priority higher than the system timer * interrupt. Then, the timeout structure for this timer will turn out * to be linked to the timeout list. And in such case, since the timer * was restarted, its expiration handler should not be executed then, * so the function exits immediately. */ if (sys_dnode_is_linked(&t->node)) { k_spin_unlock(&lock, key); return; } /* * if the timer is periodic, start it again; don't add _TICK_ALIGN * since we're already aligned to a tick boundary */ if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) && !K_TIMEOUT_EQ(timer->period, K_FOREVER)) { k_timeout_t next = timer->period; /* see note about z_add_timeout() in z_impl_k_timer_start() */ next.ticks = MAX(next.ticks - 1, 0); #ifdef CONFIG_TIMEOUT_64BIT /* Exploit the fact that uptime during a kernel * timeout handler reflects the time of the scheduled * event and not real time to get some inexpensive * protection against late interrupts. If we're * delayed for any reason, we still end up calculating * the next expiration as a regular stride from where * we "should" have run. Requires absolute timeouts. * (Note offset by one: we're nominally at the * beginning of a tick, so need to defeat the "round * down" behavior on timeout addition). */ next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks); #endif /* CONFIG_TIMEOUT_64BIT */ z_add_timeout(&timer->timeout, z_timer_expiration_handler, next); } /* update timer's status */ timer->status += 1U; /* invoke timer expiry function */ if (timer->expiry_fn != NULL) { /* Unlock for user handler. */ k_spin_unlock(&lock, key); timer->expiry_fn(timer); key = k_spin_lock(&lock); } if (!IS_ENABLED(CONFIG_MULTITHREADING)) { k_spin_unlock(&lock, key); return; } thread = z_waitq_head(&timer->wait_q); if (thread == NULL) { k_spin_unlock(&lock, key); return; } z_unpend_thread_no_timeout(thread); arch_thread_return_value_set(thread, 0); k_spin_unlock(&lock, key); z_ready_thread(thread); } void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn) { timer->expiry_fn = expiry_fn; timer->stop_fn = stop_fn; timer->status = 0U; if (IS_ENABLED(CONFIG_MULTITHREADING)) { z_waitq_init(&timer->wait_q); } z_init_timeout(&timer->timeout); SYS_PORT_TRACING_OBJ_INIT(k_timer, timer); timer->user_data = NULL; k_object_init(timer); #ifdef CONFIG_OBJ_CORE_TIMER k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); #endif /* CONFIG_OBJ_CORE_TIMER */ } void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period); /* Acquire spinlock to ensure safety during concurrent calls to * k_timer_start for scheduling or rescheduling. This is necessary * since k_timer_start can be preempted, especially for the same * timer instance. */ k_spinlock_key_t key = k_spin_lock(&lock); if (K_TIMEOUT_EQ(duration, K_FOREVER)) { k_spin_unlock(&lock, key); return; } /* z_add_timeout() always adds one to the incoming tick count * to round up to the next tick (by convention it waits for * "at least as long as the specified timeout"), but the * period interval is always guaranteed to be reset from * within the timer ISR, so no round up is desired and 1 is * subtracted in there. * * Note that the duration (!) value gets the same treatment * for backwards compatibility. This is unfortunate * (i.e. k_timer_start() doesn't treat its initial sleep * argument the same way k_sleep() does), but historical. The * timer_api test relies on this behavior. */ if (Z_TICK_ABS(duration.ticks) < 0) { duration.ticks = MAX(duration.ticks - 1, 0); } (void)z_abort_timeout(&timer->timeout); timer->period = period; timer->status = 0U; z_add_timeout(&timer->timeout, z_timer_expiration_handler, duration); k_spin_unlock(&lock, key); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_start(timer, duration, period); } #include <zephyr/syscalls/k_timer_start_mrsh.c> #endif /* CONFIG_USERSPACE */ void z_impl_k_timer_stop(struct k_timer *timer) { SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer); bool inactive = (z_abort_timeout(&timer->timeout) != 0); if (inactive) { return; } if (timer->stop_fn != NULL) { timer->stop_fn(timer); } if (IS_ENABLED(CONFIG_MULTITHREADING)) { struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q); if (pending_thread != NULL) { z_ready_thread(pending_thread); z_reschedule_unlocked(); } } } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_stop(struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_stop(timer); } #include <zephyr/syscalls/k_timer_stop_mrsh.c> #endif /* CONFIG_USERSPACE */ uint32_t z_impl_k_timer_status_get(struct k_timer *timer) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; timer->status = 0U; k_spin_unlock(&lock, key); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_get(timer); } #include <zephyr/syscalls/k_timer_status_get_mrsh.c> #endif /* CONFIG_USERSPACE */ uint32_t z_impl_k_timer_status_sync(struct k_timer *timer) { __ASSERT(!arch_is_in_isr(), ""); SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer); if (!IS_ENABLED(CONFIG_MULTITHREADING)) { uint32_t result; do { k_spinlock_key_t key = k_spin_lock(&lock); if (!z_is_inactive_timeout(&timer->timeout)) { result = *(volatile uint32_t *)&timer->status; timer->status = 0U; k_spin_unlock(&lock, key); if (result > 0) { break; } } else { result = timer->status; k_spin_unlock(&lock, key); break; } } while (true); return result; } k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; if (result == 0U) { if (!z_is_inactive_timeout(&timer->timeout)) { SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER); /* wait for timer to expire or stop */ (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER); /* get updated timer status */ key = k_spin_lock(&lock); result = timer->status; } else { /* timer is already stopped */ } } else { /* timer has already expired at least once */ } timer->status = 0U; k_spin_unlock(&lock, key); /** * @note New tracing hook */ SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_sync(timer); } #include <zephyr/syscalls/k_timer_status_sync_mrsh.c> static inline k_ticks_t z_vrfy_k_timer_remaining_ticks( const struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_remaining_ticks(timer); } #include <zephyr/syscalls/k_timer_remaining_ticks_mrsh.c> static inline k_ticks_t z_vrfy_k_timer_expires_ticks( const struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_expires_ticks(timer); } #include <zephyr/syscalls/k_timer_expires_ticks_mrsh.c> static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_user_data_get(timer); } #include <zephyr/syscalls/k_timer_user_data_get_mrsh.c> static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer, void *user_data) { K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_user_data_set(timer, user_data); } #include <zephyr/syscalls/k_timer_user_data_set_mrsh.c> #endif /* CONFIG_USERSPACE */ #ifdef CONFIG_OBJ_CORE_TIMER static int init_timer_obj_core_list(void) { /* Initialize timer object type */ z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID, offsetof(struct k_timer, obj_core)); /* Initialize and link statically defined timers */ STRUCT_SECTION_FOREACH(k_timer, timer) { k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); } return 0; } SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJ_CORE_TIMER */ |