Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | /* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Message queues. */ #include <kernel.h> #include <kernel_structs.h> #include <debug/object_tracing_common.h> #include <toolchain.h> #include <linker/sections.h> #include <string.h> #include <wait_q.h> #include <misc/dlist.h> #include <init.h> #include <syscall_handler.h> #include <kernel_internal.h> extern struct k_msgq _k_msgq_list_start[]; extern struct k_msgq _k_msgq_list_end[]; #ifdef CONFIG_OBJECT_TRACING struct k_msgq *_trace_list_k_msgq; /* * Complete initialization of statically defined message queues. */ static int init_msgq_module(struct device *dev) { ARG_UNUSED(dev); struct k_msgq *msgq; for (msgq = _k_msgq_list_start; msgq < _k_msgq_list_end; msgq++) { SYS_TRACING_OBJ_INIT(k_msgq, msgq); } return 0; } SYS_INIT(init_msgq_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ void k_msgq_init(struct k_msgq *q, char *buffer, size_t msg_size, u32_t max_msgs) { q->msg_size = msg_size; q->max_msgs = max_msgs; q->buffer_start = buffer; q->buffer_end = buffer + (max_msgs * msg_size); q->read_ptr = buffer; q->write_ptr = buffer; q->used_msgs = 0; q->flags = 0; z_waitq_init(&q->wait_q); q->lock = (struct k_spinlock) {}; SYS_TRACING_OBJ_INIT(k_msgq, q); z_object_init(q); } int z_impl_k_msgq_alloc_init(struct k_msgq *q, size_t msg_size, u32_t max_msgs) { void *buffer; int ret; size_t total_size; if (__builtin_umul_overflow((unsigned int)msg_size, max_msgs, (unsigned int *)&total_size)) { ret = -EINVAL; } else { buffer = z_thread_malloc(total_size); if (buffer != NULL) { k_msgq_init(q, buffer, msg_size, max_msgs); q->flags = K_MSGQ_FLAG_ALLOC; ret = 0; } else { ret = -ENOMEM; } } return ret; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_msgq_alloc_init, q, msg_size, max_msgs) { Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(q, K_OBJ_MSGQ)); return z_impl_k_msgq_alloc_init((struct k_msgq *)q, msg_size, max_msgs); } #endif void k_msgq_cleanup(struct k_msgq *q) { __ASSERT_NO_MSG(z_waitq_head(&q->wait_q) == NULL); if ((q->flags & K_MSGQ_FLAG_ALLOC) != 0) { k_free(q->buffer_start); q->flags &= ~K_MSGQ_FLAG_ALLOC; } } int z_impl_k_msgq_put(struct k_msgq *q, void *data, s32_t timeout) { __ASSERT(!z_is_in_isr() || timeout == K_NO_WAIT, ""); k_spinlock_key_t key = k_spin_lock(&q->lock); struct k_thread *pending_thread; int result; if (q->used_msgs < q->max_msgs) { /* message queue isn't full */ pending_thread = z_unpend_first_thread(&q->wait_q); if (pending_thread != NULL) { /* give message to waiting thread */ (void)memcpy(pending_thread->base.swap_data, data, q->msg_size); /* wake up waiting thread */ z_set_thread_return_value(pending_thread, 0); z_ready_thread(pending_thread); z_reschedule(&q->lock, key); return 0; } else { /* put message in queue */ (void)memcpy(q->write_ptr, data, q->msg_size); q->write_ptr += q->msg_size; if (q->write_ptr == q->buffer_end) { q->write_ptr = q->buffer_start; } q->used_msgs++; } result = 0; } else if (timeout == K_NO_WAIT) { /* don't wait for message space to become available */ result = -ENOMSG; } else { /* wait for put message success, failure, or timeout */ _current->base.swap_data = data; return z_pend_curr(&q->lock, key, &q->wait_q, timeout); } k_spin_unlock(&q->lock, key); return result; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_msgq_put, msgq_p, data, timeout) { struct k_msgq *q = (struct k_msgq *)msgq_p; Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ)); Z_OOPS(Z_SYSCALL_MEMORY_READ(data, q->msg_size)); return z_impl_k_msgq_put(q, (void *)data, timeout); } #endif void z_impl_k_msgq_get_attrs(struct k_msgq *q, struct k_msgq_attrs *attrs) { attrs->msg_size = q->msg_size; attrs->max_msgs = q->max_msgs; attrs->used_msgs = q->used_msgs; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_msgq_get_attrs, msgq_p, attrs) { struct k_msgq *q = (struct k_msgq *)msgq_p; Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(attrs, sizeof(struct k_msgq_attrs))); z_impl_k_msgq_get_attrs(q, (struct k_msgq_attrs *) attrs); return 0; } #endif int z_impl_k_msgq_get(struct k_msgq *q, void *data, s32_t timeout) { __ASSERT(!z_is_in_isr() || timeout == K_NO_WAIT, ""); k_spinlock_key_t key = k_spin_lock(&q->lock); struct k_thread *pending_thread; int result; if (q->used_msgs > 0) { /* take first available message from queue */ (void)memcpy(data, q->read_ptr, q->msg_size); q->read_ptr += q->msg_size; if (q->read_ptr == q->buffer_end) { q->read_ptr = q->buffer_start; } q->used_msgs--; /* handle first thread waiting to write (if any) */ pending_thread = z_unpend_first_thread(&q->wait_q); if (pending_thread != NULL) { /* add thread's message to queue */ (void)memcpy(q->write_ptr, pending_thread->base.swap_data, q->msg_size); q->write_ptr += q->msg_size; if (q->write_ptr == q->buffer_end) { q->write_ptr = q->buffer_start; } q->used_msgs++; /* wake up waiting thread */ z_set_thread_return_value(pending_thread, 0); z_ready_thread(pending_thread); z_reschedule(&q->lock, key); return 0; } result = 0; } else if (timeout == K_NO_WAIT) { /* don't wait for a message to become available */ result = -ENOMSG; } else { /* wait for get message success or timeout */ _current->base.swap_data = data; return z_pend_curr(&q->lock, key, &q->wait_q, timeout); } k_spin_unlock(&q->lock, key); return result; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_msgq_get, msgq_p, data, timeout) { struct k_msgq *q = (struct k_msgq *)msgq_p; Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(data, q->msg_size)); return z_impl_k_msgq_get(q, (void *)data, timeout); } #endif int z_impl_k_msgq_peek(struct k_msgq *q, void *data) { k_spinlock_key_t key = k_spin_lock(&q->lock); int result; if (q->used_msgs > 0) { /* take first available message from queue */ (void)memcpy(data, q->read_ptr, q->msg_size); result = 0; } else { /* don't wait for a message to become available */ result = -ENOMSG; } k_spin_unlock(&q->lock, key); return result; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_msgq_peek, msgq_p, data) { struct k_msgq *q = (struct k_msgq *)msgq_p; Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ)); Z_OOPS(Z_SYSCALL_MEMORY_WRITE(data, q->msg_size)); return z_impl_k_msgq_peek(q, (void *)data); } #endif void z_impl_k_msgq_purge(struct k_msgq *q) { k_spinlock_key_t key = k_spin_lock(&q->lock); struct k_thread *pending_thread; /* wake up any threads that are waiting to write */ while ((pending_thread = z_unpend_first_thread(&q->wait_q)) != NULL) { z_set_thread_return_value(pending_thread, -ENOMSG); z_ready_thread(pending_thread); } q->used_msgs = 0; q->read_ptr = q->write_ptr; z_reschedule(&q->lock, key); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_msgq_purge, K_OBJ_MSGQ, struct k_msgq *); Z_SYSCALL_HANDLER1_SIMPLE(k_msgq_num_free_get, K_OBJ_MSGQ, struct k_msgq *); Z_SYSCALL_HANDLER1_SIMPLE(k_msgq_num_used_get, K_OBJ_MSGQ, struct k_msgq *); #endif |