In signal processing and the study of Fourier transforms, the time-shifting property is a fundamental concept. This property describes how a shift in the time domain of a signal affects its Fourier transform in the frequency domain.
Time-Shifting Property
If \$ x(t) \$ is a continuous-time signal with the Fourier transform \$ X(f) \$, then the time-shifted signal \$ x(t - t_0) \$ has the Fourier transform \$ X(f) e^{-j2\pi f t_0} \$.
Mathematically, if: $$ x(t) \xrightarrow{\mathcal{F}} X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$
then: $$ x(t - t_0) \xrightarrow{\mathcal{F}} X(f) e^{-j2\pi f t_0}. $$
Proof
To prove this property, we start with the definition of the Fourier transform of \$ x(t - t_0) \$:
$$ x(t - t_0) \xrightarrow{\mathcal{F}} X(f) = \mathcal{F}\{x(t - t_0)\} = \int_{-\infty}^{\infty} x(t - t_0) e^{-j2\pi ft} dt $$
I think it should follow this:
$$ x(t - t_0) \xrightarrow{\mathcal{F}} X(f) = \mathcal{F}\{x(t - t_0)\} = \int_{-\infty}^{\infty} x(t - t_0) e^{-j2\pi f (t - t_0)} dt $$
Where am I wrong?