When an observation $x$ is generated by $P(x|\theta)$ for a parameter $\theta$ the Bayesian optimal estimator for the value of $\theta$ is $\hat\theta_{BEST}=\mathbb{E}[\theta|x]=\frac{1}{P(x)}\int d\theta P(\theta)P(x|\theta)$.
Now assume that instead of using $P(x|\theta)$ in the above formula we have $Q(x|\theta)$ which is different from $P$ but have the same mean and variance for all $\theta$; that is $\hat\theta_{EST}=\frac{1}{Q(x)}\int d\theta P(\theta)Q(x|\theta)$ and $\mathbb{E}[Q(x|\theta)]=\mathbb{E}[P(x|\theta)]$ and $\mathbb{V}[Q(x|\theta)]=\mathbb{V}[P(x|\theta)]$ for all $\theta$.
Are there any known boundaries on $MSE[\hat\theta_{EST}]-MSE[\hat\theta_{BEST}]$?
What if we further assume Gaussianity of $Q$?
Thanks!