If $X$ is sub-Gaussian random variable with variance proxy $\sigma^2$, i.e., $E(X) = 0$ and $E\{ \exp(s X) \} \leq \exp( \frac{\sigma^2 s^2}{2} )$ for $\forall s \in \mathbb{R}$, then how to show that $E\{ \exp( t X^2) \} \leq (1 - 2 t \sigma^2)^{-1/2}$ for $t < (2 \sigma^2)^{-1}$?
My intuition is that sub-Gaussian is the random variable with tails similar or lighter than Gaussian distribution. So I guess that $E\{ \exp( t X^2) \} \leq E [ \exp\{ t (\sigma Z)^2\} ]$ should hold for $Z \sim N(0,1)$ and $E [ \exp\{ t (\sigma Z)^2\} ] = (1 - 2 t \sigma^2)^{-1/2}$ with $t < (2 \sigma^2)^{-1}$. However, I can not rigorously prove it.